Compare the Top Data Science Software that integrates with PyCharm as of September 2025

This a list of Data Science software that integrates with PyCharm. Use the filters on the left to add additional filters for products that have integrations with PyCharm. View the products that work with PyCharm in the table below.

What is Data Science Software for PyCharm?

Data science software is a collection of tools and platforms designed to facilitate the analysis, interpretation, and visualization of large datasets, helping data scientists derive insights and build predictive models. These tools support various data science processes, including data cleaning, statistical analysis, machine learning, deep learning, and data visualization. Common features of data science software include data manipulation, algorithm libraries, model training environments, and integration with big data solutions. Data science software is widely used across industries like finance, healthcare, marketing, and technology to improve decision-making, optimize processes, and predict trends. Compare and read user reviews of the best Data Science software for PyCharm currently available using the table below. This list is updated regularly.

  • 1
    Jupyter Notebook

    Jupyter Notebook

    Project Jupyter

    The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.
  • 2
    Domino Enterprise MLOps Platform
    The Domino platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record allows teams to easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 3
    Deepnote

    Deepnote

    Deepnote

    Deepnote is building the best data science notebook for teams. In the notebook, users can connect their data, explore, and analyze it with real-time collaboration and version control. Users can easily share project links with team collaborators, or with end-users to present polished assets. All of this is done through a powerful, browser-based UI that runs in the cloud. We built Deepnote because data scientists don't work alone. Features: - Sharing notebooks and projects via URL - Inviting others to view, comment and collaborate, with version control - Publishing notebooks with visualizations for presentations - Sharing datasets between projects - Set team permissions to decide who can edit vs view code - Full linux terminal access - Code completion - Automatic python package management - Importing from github - PostgreSQL DB connection
    Starting Price: Free
  • 4
    Stata

    Stata

    StataCorp LLC

    Stata delivers everything you need for reproducible data analysis—powerful statistics, visualization, data manipulation, and automated reporting—all in one intuitive platform. Stata is fast and accurate. It is easy to learn through the extensive graphical interface yet completely programmable. With Stata's menus and dialogs, you get the best of both worlds. You can easily point and click or drag and drop your way to all of Stata's statistical, graphical, and data management features. Use Stata's intuitive command syntax to quickly execute commands. Whether you enter commands directly or use the menus and dialogs, you can create a log of all actions and their results to ensure the reproducibility and integrity of your analysis. Stata also has complete command-line scripting and programming facilities, including a full matrix programming language. You have access to everything you need to script your analysis or even to create new Stata commands.
    Starting Price: $48.00/6-month/student
  • 5
    JetBrains Datalore
    Datalore is a collaborative data science and analytics platform aimed at boosting the whole analytics workflow and making work with data enjoyable for both data scientists and data savvy business teams across the enterprise. Keeping a major focus on data teams workflow, Datalore offers technical-savvy business users the ability to work together with data teams, using no-code or low-code together with the power of Jupyter notebooks. Datalore enables analytical self-service for business users, enabling them to work with data using SQL and no-code cells, build reports and deep dive into data. It offloads the core data team with simple tasks. Datalore enables analysts and data scientists to share results with ML Engineers. You can run your code on powerful CPUs or GPUs and collaborate with your colleagues in real-time.
    Starting Price: $19.90 per month
  • 6
    Coder

    Coder

    Coder

    Coder is the AI software development company leading the future of autonomous coding. We empower teams to build software faster, more securely, and at scale through the collaboration of AI coding agents and human developers. Our mission is to make agentic AI a safe, trusted, and integral part of every software development lifecycle. Coder’s self-hosted Cloud Development Environment (CDE) is the foundation for deploying agentic AI in the enterprise. It provides a secure, standardized, and governed workspace to deploy autonomous coding agents alongside human developers, accelerating innovation while maintaining control and compliance. Coder's isolated, policy-driven environments improve productivity, cut cloud costs, and reduce data risks. Developers transition to AI at their own pace using their own tools. Platform and security teams can govern, audit, and manage a great developer experience at scale.
  • Previous
  • You're on page 1
  • Next