Compare the Top Data Science Software that integrates with Kubernetes as of October 2025

This a list of Data Science software that integrates with Kubernetes. Use the filters on the left to add additional filters for products that have integrations with Kubernetes. View the products that work with Kubernetes in the table below.

What is Data Science Software for Kubernetes?

Data science software is a collection of tools and platforms designed to facilitate the analysis, interpretation, and visualization of large datasets, helping data scientists derive insights and build predictive models. These tools support various data science processes, including data cleaning, statistical analysis, machine learning, deep learning, and data visualization. Common features of data science software include data manipulation, algorithm libraries, model training environments, and integration with big data solutions. Data science software is widely used across industries like finance, healthcare, marketing, and technology to improve decision-making, optimize processes, and predict trends. Compare and read user reviews of the best Data Science software for Kubernetes currently available using the table below. This list is updated regularly.

  • 1
    Jupyter Notebook

    Jupyter Notebook

    Project Jupyter

    The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.
  • 2
    Coder

    Coder

    Coder

    Coder is the AI software development company leading the future of autonomous coding. We empower teams to build software faster, more securely, and at scale through the collaboration of AI coding agents and human developers. Our mission is to make agentic AI a safe, trusted, and integral part of every software development lifecycle. Coder’s self-hosted Cloud Development Environment (CDE) is the foundation for deploying agentic AI in the enterprise. It provides a secure, standardized, and governed workspace to deploy autonomous coding agents alongside human developers, accelerating innovation while maintaining control and compliance. Coder's isolated, policy-driven environments improve productivity, cut cloud costs, and reduce data risks. Developers transition to AI at their own pace using their own tools. Platform and security teams can govern, audit, and manage a great developer experience at scale.
  • 3
    TrueFoundry

    TrueFoundry

    TrueFoundry

    TrueFoundry is a Cloud-native Machine Learning Training and Deployment PaaS on top of Kubernetes that enables Machine learning teams to train and Deploy models at the speed of Big Tech with 100% reliability and scalability - allowing them to save cost and release Models to production faster. We abstract out the Kubernetes for Data Scientists and enable them to operate in a way they are comfortable. It also allows teams to deploy and fine-tune large language models seamlessly with full security and cost optimization. TrueFoundry is open-ended, API Driven and integrates with the internal systems, deploys on a company's internal infrastructure and ensures complete Data Privacy and DevSecOps practices.
    Starting Price: $5 per month
  • 4
    Intel Tiber AI Studio
    Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
  • 5
    HPE Ezmeral

    HPE Ezmeral

    Hewlett Packard Enterprise

    Run, manage, control and secure the apps, data and IT that run your business, from edge to cloud. HPE Ezmeral advances digital transformation initiatives by shifting time and resources from IT operations to innovations. Modernize your apps. Simplify your Ops. And harness data to go from insights to impact. Accelerate time-to-value by deploying Kubernetes at scale with integrated persistent data storage for app modernization on bare metal or VMs, in your data center, on any cloud or at the edge. Harness data and get insights faster by operationalizing the end-to-end process to build data pipelines. Bring DevOps agility to the machine learning lifecycle, and deliver a unified data fabric. Boost efficiency and agility in IT Ops with automation and advanced artificial intelligence. And provide security and control to eliminate risk and reduce costs. HPE Ezmeral Container Platform provides an enterprise-grade platform to deploy Kubernetes at scale for a wide range of use cases.
  • 6
    Outerbounds

    Outerbounds

    Outerbounds

    Design and develop data-intensive projects with human-friendly, open-source Metaflow. Run, scale, and deploy them reliably on the fully managed Outerbounds platform. One platform for all your ML and data science projects. Access data securely from your existing data warehouses. Compute with a cluster optimized for scale and cost. 24/7 managed orchestration for production workflows. Use results to power any application. Give your data scientists superpowers, approved by your engineers. Outerbounds Platform allows data scientists to develop rapidly, experiment at scale, and deploy to production confidently. All within the outer bounds of policies and processes defined by your engineers, running on your cloud account, fully managed by us. Security is in our DNA, not at the perimeter. The platform adapts to your policies and compliance requirements through multiple layers of security. Centralized auth, a strict permission boundary, and granular task execution roles.
  • Previous
  • You're on page 1
  • Next