Compare the Top Data Science Software that integrates with GitLab as of September 2025

This a list of Data Science software that integrates with GitLab. Use the filters on the left to add additional filters for products that have integrations with GitLab. View the products that work with GitLab in the table below.

What is Data Science Software for GitLab?

Data science software is a collection of tools and platforms designed to facilitate the analysis, interpretation, and visualization of large datasets, helping data scientists derive insights and build predictive models. These tools support various data science processes, including data cleaning, statistical analysis, machine learning, deep learning, and data visualization. Common features of data science software include data manipulation, algorithm libraries, model training environments, and integration with big data solutions. Data science software is widely used across industries like finance, healthcare, marketing, and technology to improve decision-making, optimize processes, and predict trends. Compare and read user reviews of the best Data Science software for GitLab currently available using the table below. This list is updated regularly.

  • 1
    Gathr.ai

    Gathr.ai

    Gathr.ai

    Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500
    Leader badge
    Starting Price: $0.25/credit
  • 2
    Domino Enterprise MLOps Platform
    The Domino platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record allows teams to easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 3
    Coder

    Coder

    Coder

    Coder is the AI software development company leading the future of autonomous coding. We empower teams to build software faster, more securely, and at scale through the collaboration of AI coding agents and human developers. Our mission is to make agentic AI a safe, trusted, and integral part of every software development lifecycle. Coder’s self-hosted Cloud Development Environment (CDE) is the foundation for deploying agentic AI in the enterprise. It provides a secure, standardized, and governed workspace to deploy autonomous coding agents alongside human developers, accelerating innovation while maintaining control and compliance. Coder's isolated, policy-driven environments improve productivity, cut cloud costs, and reduce data risks. Developers transition to AI at their own pace using their own tools. Platform and security teams can govern, audit, and manage a great developer experience at scale.
  • 4
    TrueFoundry

    TrueFoundry

    TrueFoundry

    TrueFoundry is a Cloud-native Machine Learning Training and Deployment PaaS on top of Kubernetes that enables Machine learning teams to train and Deploy models at the speed of Big Tech with 100% reliability and scalability - allowing them to save cost and release Models to production faster. We abstract out the Kubernetes for Data Scientists and enable them to operate in a way they are comfortable. It also allows teams to deploy and fine-tune large language models seamlessly with full security and cost optimization. TrueFoundry is open-ended, API Driven and integrates with the internal systems, deploys on a company's internal infrastructure and ensures complete Data Privacy and DevSecOps practices.
    Starting Price: $5 per month
  • 5
    HPE Ezmeral

    HPE Ezmeral

    Hewlett Packard Enterprise

    Run, manage, control and secure the apps, data and IT that run your business, from edge to cloud. HPE Ezmeral advances digital transformation initiatives by shifting time and resources from IT operations to innovations. Modernize your apps. Simplify your Ops. And harness data to go from insights to impact. Accelerate time-to-value by deploying Kubernetes at scale with integrated persistent data storage for app modernization on bare metal or VMs, in your data center, on any cloud or at the edge. Harness data and get insights faster by operationalizing the end-to-end process to build data pipelines. Bring DevOps agility to the machine learning lifecycle, and deliver a unified data fabric. Boost efficiency and agility in IT Ops with automation and advanced artificial intelligence. And provide security and control to eliminate risk and reduce costs. HPE Ezmeral Container Platform provides an enterprise-grade platform to deploy Kubernetes at scale for a wide range of use cases.
  • Previous
  • You're on page 1
  • Next