Best Data Quality Software for Apache Airflow

Compare the Top Data Quality Software that integrates with Apache Airflow as of June 2025

This a list of Data Quality software that integrates with Apache Airflow. Use the filters on the left to add additional filters for products that have integrations with Apache Airflow. View the products that work with Apache Airflow in the table below.

What is Data Quality Software for Apache Airflow?

Data quality software helps organizations ensure that their data is accurate, consistent, complete, and reliable. These tools provide functionalities for data profiling, cleansing, validation, and enrichment, helping businesses identify and correct errors, duplicates, or inconsistencies in their datasets. Data quality software often includes features like automated data correction, real-time monitoring, and data governance to maintain high-quality data standards. It plays a critical role in ensuring that data is suitable for analysis, reporting, decision-making, and compliance purposes, particularly in industries that rely on data-driven insights. Compare and read user reviews of the best Data Quality software for Apache Airflow currently available using the table below. This list is updated regularly.

  • 1
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Software
    Visit Website
  • 2
    Sifflet

    Sifflet

    Sifflet

    Automatically cover thousands of tables with ML-based anomaly detection and 50+ custom metrics. Comprehensive data and metadata monitoring. Exhaustive mapping of all dependencies between assets, from ingestion to BI. Enhanced productivity and collaboration between data engineers and data consumers. Sifflet seamlessly integrates into your data sources and preferred tools and can run on AWS, Google Cloud Platform, and Microsoft Azure. Keep an eye on the health of your data and alert the team when quality criteria aren’t met. Set up in a few clicks the fundamental coverage of all your tables. Configure the frequency of runs, their criticality, and even customized notifications at the same time. Leverage ML-based rules to detect any anomaly in your data. No need for an initial configuration. A unique model for each rule learns from historical data and from user feedback. Complement the automated rules with a library of 50+ templates that can be applied to any asset.
  • 3
    DQOps

    DQOps

    DQOps

    DQOps is an open-source data quality platform designed for data quality and data engineering teams that makes data quality visible to business sponsors. The platform provides an efficient user interface to quickly add data sources, configure data quality checks, and manage issues. DQOps comes with over 150 built-in data quality checks, but you can also design custom checks to detect any business-relevant data quality issues. The platform supports incremental data quality monitoring to support analyzing data quality of very big tables. Track data quality KPI scores using our built-in or custom dashboards to show progress in improving data quality to business sponsors. DQOps is DevOps-friendly, allowing you to define data quality definitions in YAML files stored in Git, run data quality checks directly from your data pipelines, or automate any action with a Python Client. DQOps works locally or as a SaaS platform.
    Starting Price: $499 per month
  • 4
    Decube

    Decube

    Decube

    Decube is a data management platform that helps organizations manage their data observability, data catalog, and data governance needs. It provides end-to-end visibility into data and ensures its accuracy, consistency, and trustworthiness. Decube's platform includes data observability, a data catalog, and data governance components that work together to provide a comprehensive solution. The data observability tools enable real-time monitoring and detection of data incidents, while the data catalog provides a centralized repository for data assets, making it easier to manage and govern data usage and access. The data governance tools provide robust access controls, audit reports, and data lineage tracking to demonstrate compliance with regulatory requirements. Decube's platform is customizable and scalable, making it easy for organizations to tailor it to meet their specific data management needs and manage data across different systems, data sources, and departments.
  • 5
    Telmai

    Telmai

    Telmai

    A low-code no-code approach to data quality. SaaS for flexibility, affordability, ease of integration, and efficient support. High standards of encryption, identity management, role-based access control, data governance, and compliance standards. Advanced ML models for detecting row-value data anomalies. Models will evolve and adapt to users' business and data needs. Add any number of data sources, records, and attributes. Well-equipped for unpredictable volume spikes. Support batch and streaming processing. Data is constantly monitored to provide real-time notifications, with zero impact on pipeline performance. Seamless boarding, integration, and investigation experience. Telmai is a platform for the Data Teams to proactively detect and investigate anomalies in real time. A no-code on-boarding. Connect to your data source and specify alerting channels. Telmai will automatically learn from data and alert you when there are unexpected drifts.
  • 6
    Foundational

    Foundational

    Foundational

    Identify code and optimization issues in real-time, prevent data incidents pre-deploy, and govern data-impacting code changes end to end—from the operational database to the user-facing dashboard. Automated, column-level data lineage, from the operational database all the way to the reporting layer, ensures every dependency is analyzed. Foundational automates data contract enforcement by analyzing every repository from upstream to downstream, directly from source code. Use Foundational to proactively identify code and data issues, find and prevent issues, and create controls and guardrails. Foundational can be set up in minutes with no code changes required.
  • 7
    IBM Databand
    Monitor your data health and pipeline performance. Gain unified visibility for pipelines running on cloud-native tools like Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. An observability platform purpose built for Data Engineers. Data engineering is only getting more challenging as demands from business stakeholders grow. Databand can help you catch up. More pipelines, more complexity. Data engineers are working with more complex infrastructure than ever and pushing higher speeds of release. It’s harder to understand why a process has failed, why it’s running late, and how changes affect the quality of data outputs. Data consumers are frustrated with inconsistent results, model performance, and delays in data delivery. Not knowing exactly what data is being delivered, or precisely where failures are coming from, leads to persistent lack of trust. Pipeline logs, errors, and data quality metrics are captured and stored in independent, isolated systems.
  • 8
    Datafold

    Datafold

    Datafold

    Prevent data outages by identifying and fixing data quality issues before they get into production. Go from 0 to 100% test coverage of your data pipelines in a day. Know the impact of each code change with automatic regression testing across billions of rows. Automate change management, improve data literacy, achieve compliance, and reduce incident response time. Don’t let data incidents take you by surprise. Be the first one to know with automated anomaly detection. Datafold’s easily adjustable ML model adapts to seasonality and trend patterns in your data to construct dynamic thresholds. Save hours spent on trying to understand data. Use the Data Catalog to find relevant datasets, fields, and explore distributions easily with an intuitive UI. Get interactive full-text search, data profiling, and consolidation of metadata in one place.
  • 9
    Great Expectations

    Great Expectations

    Great Expectations

    Great Expectations is a shared, open standard for data quality. It helps data teams eliminate pipeline debt, through data testing, documentation, and profiling. We recommend deploying within a virtual environment. If you’re not familiar with pip, virtual environments, notebooks, or git, you may want to check out the Supporting. There are many amazing companies using great expectations these days. Check out some of our case studies with companies that we've worked closely with to understand how they are using great expectations in their data stack. Great expectations cloud is a fully managed SaaS offering. We're taking on new private alpha members for great expectations cloud, a fully managed SaaS offering. Alpha members get first access to new features and input to the roadmap.
  • 10
    rudol

    rudol

    rudol

    Unify your data catalog, reduce communication overhead and enable quality control to any member of your company, all without deploying or installing anything. rudol is a data quality platform that helps companies understand all their data sources, no matter where they come from; reduces excessive communication in reporting processes or urgencies; and enables data quality diagnosing and issue prevention to all the company, through easy steps With rudol, each organization is able to add data sources from a growing list of providers and BI tools with a standardized structure, including MySQL, PostgreSQL, Airflow, Redshift, Snowflake, Kafka, S3*, BigQuery*, MongoDB*, Tableau*, PowerBI*, Looker* (* in development). So, regardless of where it’s coming from, people can understand where and how the data is stored, read and collaborate with its documentation, or easily contact data owners using our integrations.
    Starting Price: $0
  • Previous
  • You're on page 1
  • Next