Compare the Top Data Pipeline Software that integrates with Python as of June 2025

This a list of Data Pipeline software that integrates with Python. Use the filters on the left to add additional filters for products that have integrations with Python. View the products that work with Python in the table below.

What is Data Pipeline Software for Python?

Data pipeline software helps businesses automate the movement, transformation, and storage of data from various sources to destinations such as data warehouses, lakes, or analytic platforms. These platforms provide tools for extracting data from multiple sources, processing it in real-time or batch, and loading it into target systems for analysis or reporting (ETL: Extract, Transform, Load). Data pipeline software often includes features for data monitoring, error handling, scheduling, and integration with other software tools, making it easier for organizations to ensure data consistency, accuracy, and flow. By using this software, businesses can streamline data workflows, improve decision-making, and ensure that data is readily available for analysis. Compare and read user reviews of the best Data Pipeline software for Python currently available using the table below. This list is updated regularly.

  • 1
    Tenzir

    Tenzir

    Tenzir

    ​Tenzir is a data pipeline engine specifically designed for security teams, facilitating the collection, transformation, enrichment, and routing of security data throughout its lifecycle. It enables users to seamlessly gather data from various sources, parse unstructured data into structured formats, and transform it as needed. It optimizes data volume, reduces costs, and supports mapping to standardized schemas like OCSF, ASIM, and ECS. Tenzir ensures compliance through data anonymization features and enriches data by adding context from threats, assets, and vulnerabilities. It supports real-time detection and stores data efficiently in Parquet format within object storage systems. Users can rapidly search and materialize necessary data and reactivate at-rest data back into motion. Tension is built for flexibility, allowing deployment as code and integration into existing workflows, ultimately aiming to reduce SIEM costs and provide full control.
    View Software
    Visit Website
  • 2
    Mage

    Mage

    Mage

    Mage is a tool that transforms your data into predictions. Build, train, and deploy predictive models in minutes. No AI experience required. Increase user engagement by ranking content on your user’s home feed. Increase conversion by showing the most relevant products for a user to buy. Increase retention by predicting which users will stop using your app. Increase conversion by matching users in a marketplace. Data is the most important part in building AI. Mage will guide you through this process with suggestions on how to improve your data, making you an AI expert. AI and its predictions are difficult to understand. Mage explains every metric in-depth, teaching you how your AI model thinks. Get real-time predictions with a few lines of code. Mage makes it easy for you to integrate your AI model in any application.
    Starting Price: Free
  • 3
    Quix

    Quix

    Quix

    Building real-time apps and services require lots of components running in concert: Kafka, VPC hosting, infrastructure as code, container orchestration, observability, CI/CD, persistent volumes, databases, and much more. The Quix platform takes care of all the moving parts. You just connect your data and start building. That’s it. No provisioning clusters or configuring resources. Use Quix connectors to ingest transaction messages streamed from your financial processing systems in a virtual private cloud or on-premise data center. All data in transit is encrypted end-to-end and compressed with G-Zip and Protobuf for security and efficiency. Detect fraudulent patterns with machine learning models or rule-based algorithms. Create fraud warning messages as troubleshooting tickets or display them in support dashboards.
    Starting Price: $50 per month
  • 4
    Yandex Data Proc
    You select the size of the cluster, node capacity, and a set of services, and Yandex Data Proc automatically creates and configures Spark and Hadoop clusters and other components. Collaborate by using Zeppelin notebooks and other web apps via a UI proxy. You get full control of your cluster with root permissions for each VM. Install your own applications and libraries on running clusters without having to restart them. Yandex Data Proc uses instance groups to automatically increase or decrease computing resources of compute subclusters based on CPU usage indicators. Data Proc allows you to create managed Hive clusters, which can reduce the probability of failures and losses caused by metadata unavailability. Save time on building ETL pipelines and pipelines for training and developing models, as well as describing other iterative tasks. The Data Proc operator is already built into Apache Airflow.
    Starting Price: $0.19 per hour
  • 5
    GlassFlow

    GlassFlow

    GlassFlow

    GlassFlow is a serverless, event-driven data pipeline platform designed for Python developers. It enables users to build real-time data pipelines without the need for complex infrastructure like Kafka or Flink. By writing Python functions, developers can define data transformations, and GlassFlow manages the underlying infrastructure, offering auto-scaling, low latency, and optimal data retention. The platform supports integration with various data sources and destinations, including Google Pub/Sub, AWS Kinesis, and OpenAI, through its Python SDK and managed connectors. GlassFlow provides a low-code interface for quick pipeline setup, allowing users to create and deploy pipelines within minutes. It also offers features such as serverless function execution, real-time API connections, and alerting and reprocessing capabilities. The platform is designed to simplify the creation and management of event-driven data pipelines, making it accessible for Python developers.
    Starting Price: $350 per month
  • 6
    Streamkap

    Streamkap

    Streamkap

    Streamkap is a streaming data platform that makes streaming as easy as batch. Stream data from database (change data capturee) or event sources to your favorite database, data warehouse or data lake. Streamkap can be deployed as a SaaS or in a bring your own cloud (BYOC) deployment.
    Starting Price: $600 per month
  • 7
    Google Cloud Composer
    Cloud Composer's managed nature and Apache Airflow compatibility allows you to focus on authoring, scheduling, and monitoring your workflows as opposed to provisioning resources. End-to-end integration with Google Cloud products including BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform gives users the freedom to fully orchestrate their pipeline. Author, schedule, and monitor your workflows through a single orchestration tool—whether your pipeline lives on-premises, in multiple clouds, or fully within Google Cloud. Ease your transition to the cloud or maintain a hybrid data environment by orchestrating workflows that cross between on-premises and the public cloud. Create workflows that connect data, processing, and services across clouds to give you a unified data environment.
    Starting Price: $0.074 per vCPU hour
  • 8
    DataOps.live

    DataOps.live

    DataOps.live

    DataOps.live, the Data Products company, delivers productivity and governance breakthroughs for data developers and teams through environment automation, pipeline orchestration, continuous testing and unified observability. We bring agile DevOps automation and a powerful unified cloud Developer Experience (DX) ​to modern cloud data platforms like Snowflake.​ DataOps.live, a global cloud-native company, is used by Global 2000 enterprises including Roche Diagnostics and OneWeb to deliver 1000s of Data Product releases per month with the speed and governance the business demands.
  • 9
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 10
    Orchestra

    Orchestra

    Orchestra

    Orchestra is a Unified Control Plane for Data and AI Operations, designed to help data teams build, deploy, and monitor workflows with ease. It offers a declarative framework that combines code and GUI, allowing users to implement workflows 10x faster and reduce maintenance time by 50%. With real-time metadata aggregation, Orchestra provides full-stack data observability, enabling proactive alerting and rapid recovery from pipeline failures. It integrates seamlessly with tools like dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and more, ensuring compatibility with existing data stacks. Orchestra's modular architecture supports AWS, Azure, and GCP, making it a versatile solution for enterprises and scale-ups aiming to streamline their data operations and build trust in their AI initiatives.
  • 11
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 12
    Kestra

    Kestra

    Kestra

    Kestra is an open-source, event-driven orchestrator that simplifies data operations and improves collaboration between engineers and business users. By bringing Infrastructure as Code best practices to data pipelines, Kestra allows you to build reliable workflows and manage them with confidence. Thanks to the declarative YAML interface for defining orchestration logic, everyone who benefits from analytics can participate in the data pipeline creation process. The UI automatically adjusts the YAML definition any time you make changes to a workflow from the UI or via an API call. Therefore, the orchestration logic is defined declaratively in code, even if some workflow components are modified in other ways.
  • Previous
  • You're on page 1
  • Next