Compare the Top Data Pipeline Software that integrates with Docker as of July 2025

This a list of Data Pipeline software that integrates with Docker. Use the filters on the left to add additional filters for products that have integrations with Docker. View the products that work with Docker in the table below.

What is Data Pipeline Software for Docker?

Data pipeline software helps businesses automate the movement, transformation, and storage of data from various sources to destinations such as data warehouses, lakes, or analytic platforms. These platforms provide tools for extracting data from multiple sources, processing it in real-time or batch, and loading it into target systems for analysis or reporting (ETL: Extract, Transform, Load). Data pipeline software often includes features for data monitoring, error handling, scheduling, and integration with other software tools, making it easier for organizations to ensure data consistency, accuracy, and flow. By using this software, businesses can streamline data workflows, improve decision-making, and ensure that data is readily available for analysis. Compare and read user reviews of the best Data Pipeline software for Docker currently available using the table below. This list is updated regularly.

  • 1
    TrueFoundry

    TrueFoundry

    TrueFoundry

    TrueFoundry is a Cloud-native Machine Learning Training and Deployment PaaS on top of Kubernetes that enables Machine learning teams to train and Deploy models at the speed of Big Tech with 100% reliability and scalability - allowing them to save cost and release Models to production faster. We abstract out the Kubernetes for Data Scientists and enable them to operate in a way they are comfortable. It also allows teams to deploy and fine-tune large language models seamlessly with full security and cost optimization. TrueFoundry is open-ended, API Driven and integrates with the internal systems, deploys on a company's internal infrastructure and ensures complete Data Privacy and DevSecOps practices.
    Starting Price: $5 per month
  • 2
    GlassFlow

    GlassFlow

    GlassFlow

    GlassFlow is a serverless, event-driven data pipeline platform designed for Python developers. It enables users to build real-time data pipelines without the need for complex infrastructure like Kafka or Flink. By writing Python functions, developers can define data transformations, and GlassFlow manages the underlying infrastructure, offering auto-scaling, low latency, and optimal data retention. The platform supports integration with various data sources and destinations, including Google Pub/Sub, AWS Kinesis, and OpenAI, through its Python SDK and managed connectors. GlassFlow provides a low-code interface for quick pipeline setup, allowing users to create and deploy pipelines within minutes. It also offers features such as serverless function execution, real-time API connections, and alerting and reprocessing capabilities. The platform is designed to simplify the creation and management of event-driven data pipelines, making it accessible for Python developers.
    Starting Price: $350 per month
  • 3
    Nextflow

    Nextflow

    Seqera Labs

    Data-driven computational pipelines. Nextflow enables scalable and reproducible scientific workflows using software containers. It allows the adaptation of pipelines written in the most common scripting languages. Its fluent DSL simplifies the implementation and deployment of complex parallel and reactive workflows on clouds and clusters. Nextflow is built around the idea that Linux is the lingua franca of data science. Nextflow allows you to write a computational pipeline by making it simpler to put together many different tasks. You may reuse your existing scripts and tools and you don't need to learn a new language or API to start using it. Nextflow supports Docker and Singularity containers technology. This, along with the integration of the GitHub code-sharing platform, allows you to write self-contained pipelines, manage versions, and rapidly reproduce any former configuration. Nextflow provides an abstraction layer between your pipeline's logic and the execution layer.
    Starting Price: Free
  • 4
    DataOps.live

    DataOps.live

    DataOps.live

    DataOps.live, the Data Products company, delivers productivity and governance breakthroughs for data developers and teams through environment automation, pipeline orchestration, continuous testing and unified observability. We bring agile DevOps automation and a powerful unified cloud Developer Experience (DX) ​to modern cloud data platforms like Snowflake.​ DataOps.live, a global cloud-native company, is used by Global 2000 enterprises including Roche Diagnostics and OneWeb to deliver 1000s of Data Product releases per month with the speed and governance the business demands.
  • 5
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 6
    Astro

    Astro

    Astronomer

    For data teams looking to increase the availability of trusted data, Astronomer provides Astro, a modern data orchestration platform, powered by Apache Airflow, that enables the entire data team to build, run, and observe data pipelines-as-code. Astronomer is the commercial developer of Airflow, the de facto standard for expressing data flows as code, used by hundreds of thousands of teams across the world.
  • 7
    Meltano

    Meltano

    Meltano

    Meltano provides the ultimate flexibility in deployment options. Own your data stack, end to end. Ever growing connector library of 300+ connectors have been running in production for years. Run workflows in isolated environments, execute end-to-end tests, and version control everything. Open source gives you the power to build your ideal data stack. Define your entire project as code and collaborate confidently with your team. The Meltano CLI enables you to rapidly create your project, making it easy to start replicating data. Meltano is designed to be the best way to run dbt to manage your transformations. Your entire data stack is defined in your project, making it simple to deploy it to production. Validate your changes in development before moving to CI, and in staging before moving to production.
  • 8
    Kestra

    Kestra

    Kestra

    Kestra is an open-source, event-driven orchestrator that simplifies data operations and improves collaboration between engineers and business users. By bringing Infrastructure as Code best practices to data pipelines, Kestra allows you to build reliable workflows and manage them with confidence. Thanks to the declarative YAML interface for defining orchestration logic, everyone who benefits from analytics can participate in the data pipeline creation process. The UI automatically adjusts the YAML definition any time you make changes to a workflow from the UI or via an API call. Therefore, the orchestration logic is defined declaratively in code, even if some workflow components are modified in other ways.
  • 9
    DataKitchen

    DataKitchen

    DataKitchen

    Reclaim control of your data pipelines and deliver value instantly, without errors. The DataKitchen™ DataOps platform automates and coordinates all the people, tools, and environments in your entire data analytics organization – everything from orchestration, testing, and monitoring to development and deployment. You’ve already got the tools you need. Our platform automatically orchestrates your end-to-end multi-tool, multi-environment pipelines – from data access to value delivery. Catch embarrassing and costly errors before they reach the end-user by adding any number of automated tests at every node in your development and production pipelines. Spin-up repeatable work environments in minutes to enable teams to make changes and experiment – without breaking production. Fearlessly deploy new features into production with the push of a button. Free your teams from tedious, manual work that impedes innovation.
  • Previous
  • You're on page 1
  • Next