Best Data Pipeline Software for Apache Druid

Compare the Top Data Pipeline Software that integrates with Apache Druid as of October 2025

This a list of Data Pipeline software that integrates with Apache Druid. Use the filters on the left to add additional filters for products that have integrations with Apache Druid. View the products that work with Apache Druid in the table below.

What is Data Pipeline Software for Apache Druid?

Data pipeline software helps businesses automate the movement, transformation, and storage of data from various sources to destinations such as data warehouses, lakes, or analytic platforms. These platforms provide tools for extracting data from multiple sources, processing it in real-time or batch, and loading it into target systems for analysis or reporting (ETL: Extract, Transform, Load). Data pipeline software often includes features for data monitoring, error handling, scheduling, and integration with other software tools, making it easier for organizations to ensure data consistency, accuracy, and flow. By using this software, businesses can streamline data workflows, improve decision-making, and ensure that data is readily available for analysis. Compare and read user reviews of the best Data Pipeline software for Apache Druid currently available using the table below. This list is updated regularly.

  • 1
    Apache Kafka

    Apache Kafka

    The Apache Software Foundation

    Apache Kafka® is an open-source, distributed streaming platform. Scale production clusters up to a thousand brokers, trillions of messages per day, petabytes of data, hundreds of thousands of partitions. Elastically expand and contract storage and processing. Stretch clusters efficiently over availability zones or connect separate clusters across geographic regions. Process streams of events with joins, aggregations, filters, transformations, and more, using event-time and exactly-once processing. Kafka’s out-of-the-box Connect interface integrates with hundreds of event sources and event sinks including Postgres, JMS, Elasticsearch, AWS S3, and more. Read, write, and process streams of events in a vast array of programming languages.
  • 2
    Gravity Data
    Gravity's mission is to make streaming data easy from over 100 sources while only paying for what you use. Gravity removes the reliance on engineering teams to deliver streaming pipelines with a simple interface to get streaming up and running in minutes from databases, event data and APIs. Everyone in the data team can now build with simple point and click so that you can focus on building apps, services and customer experiences. Full Execution trace and detailed error messaging for quick diagnosis and resolution. We have implemented new, feature-rich ways for you to quickly get started. From bulk set-up, default schemas and data selection to different job modes and statuses. Spend less time wrangling with infrastructure and more time analysing data while allowing our intelligent engine to keep your pipelines running. Gravity integrates with your systems for notifications and orchestration.
  • 3
    Astro by Astronomer
    For data teams looking to increase the availability of trusted data, Astronomer provides Astro, a modern data orchestration platform, powered by Apache Airflow, that enables the entire data team to build, run, and observe data pipelines-as-code. Astronomer is the commercial developer of Airflow, the de facto standard for expressing data flows as code, used by hundreds of thousands of teams across the world.
  • 4
    Apache Airflow

    Apache Airflow

    The Apache Software Foundation

    Airflow is a platform created by the community to programmatically author, schedule and monitor workflows. Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity. Airflow pipelines are defined in Python, allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically. Easily define your own operators and extend libraries to fit the level of abstraction that suits your environment. Airflow pipelines are lean and explicit. Parametrization is built into its core using the powerful Jinja templating engine. No more command-line or XML black-magic! Use standard Python features to create your workflows, including date time formats for scheduling and loops to dynamically generate tasks. This allows you to maintain full flexibility when building your workflows.
  • Previous
  • You're on page 1
  • Next