Best Data Pipeline Software for Amazon Web Services (AWS)

Compare the Top Data Pipeline Software that integrates with Amazon Web Services (AWS) as of October 2025

This a list of Data Pipeline software that integrates with Amazon Web Services (AWS). Use the filters on the left to add additional filters for products that have integrations with Amazon Web Services (AWS). View the products that work with Amazon Web Services (AWS) in the table below.

What is Data Pipeline Software for Amazon Web Services (AWS)?

Data pipeline software helps businesses automate the movement, transformation, and storage of data from various sources to destinations such as data warehouses, lakes, or analytic platforms. These platforms provide tools for extracting data from multiple sources, processing it in real-time or batch, and loading it into target systems for analysis or reporting (ETL: Extract, Transform, Load). Data pipeline software often includes features for data monitoring, error handling, scheduling, and integration with other software tools, making it easier for organizations to ensure data consistency, accuracy, and flow. By using this software, businesses can streamline data workflows, improve decision-making, and ensure that data is readily available for analysis. Compare and read user reviews of the best Data Pipeline software for Amazon Web Services (AWS) currently available using the table below. This list is updated regularly.

  • 1
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Software
    Visit Website
  • 2
    Stitch
    Stitch is a cloud-based platform for ETL – extract, transform, and load. More than a thousand companies use Stitch to move billions of records every day from SaaS applications and databases into data warehouses and data lakes.
  • 3
    Dagster

    Dagster

    Dagster Labs

    Dagster is a next-generation orchestration platform for the development, production, and observation of data assets. Unlike other data orchestration solutions, Dagster provides you with an end-to-end development lifecycle. Dagster gives you control over your disparate data tools and empowers you to build, test, deploy, run, and iterate on your data pipelines. It makes you and your data teams more productive, your operations more robust, and puts you in complete control of your data processes as you scale. Dagster brings a declarative approach to the engineering of data pipelines. Your team defines the data assets required, quickly assessing their status and resolving any discrepancies. An assets-based model is clearer than a tasks-based one and becomes a unifying abstraction across the whole workflow.
    Starting Price: $0
  • 4
    StreamNative

    StreamNative

    StreamNative

    StreamNative redefines streaming infrastructure by seamlessly integrating Kafka, MQ, and other protocols into a single, unified platform, providing unparalleled flexibility and efficiency for modern data processing needs. StreamNative offers a unified solution that adapts to the diverse requirements of streaming and messaging in a microservices-driven environment. By providing a comprehensive and intelligent approach to messaging and streaming, StreamNative empowers organizations to navigate the complexities and scalability of the modern data ecosystem with efficiency and agility. Apache Pulsar’s unique architecture decouples the message serving layer from the message storage layer to deliver a mature cloud-native data-streaming platform. Scalable and elastic to adapt to rapidly changing event traffic and business needs. Scale-up to millions of topics with architecture that decouples computing and storage.
    Starting Price: $1,000 per month
  • 5
    DoubleCloud

    DoubleCloud

    DoubleCloud

    Save time & costs by streamlining data pipelines with zero-maintenance open source solutions. From ingestion to visualization, all are integrated, fully managed, and highly reliable, so your engineers will love working with data. You choose whether to use any of DoubleCloud’s managed open source services or leverage the full power of the platform, including data storage, orchestration, ELT, and real-time visualization. We provide leading open source services like ClickHouse, Kafka, and Airflow, with deployment on Amazon Web Services or Google Cloud. Our no-code ELT tool allows real-time data syncing between systems, fast, serverless, and seamlessly integrated with your existing infrastructure. With our managed open-source data visualization you can simply visualize your data in real time by building charts and dashboards. We’ve designed our platform to make the day-to-day life of engineers more convenient.
    Starting Price: $0.024 per 1 GB per month
  • 6
    Amazon MWAA
    Amazon Managed Workflows for Apache Airflow (MWAA) is a managed orchestration service for Apache Airflow that makes it easier to set up and operate end-to-end data pipelines in the cloud at scale. Apache Airflow is an open-source tool used to programmatically author, schedule, and monitor sequences of processes and tasks referred to as “workflows.” With Managed Workflows, you can use Airflow and Python to create workflows without having to manage the underlying infrastructure for scalability, availability, and security. Managed Workflows automatically scales its workflow execution capacity to meet your needs, and is integrated with AWS security services to help provide you with fast and secure access to data.
    Starting Price: $0.49 per hour
  • 7
    Nextflow

    Nextflow

    Seqera Labs

    Data-driven computational pipelines. Nextflow enables scalable and reproducible scientific workflows using software containers. It allows the adaptation of pipelines written in the most common scripting languages. Its fluent DSL simplifies the implementation and deployment of complex parallel and reactive workflows on clouds and clusters. Nextflow is built around the idea that Linux is the lingua franca of data science. Nextflow allows you to write a computational pipeline by making it simpler to put together many different tasks. You may reuse your existing scripts and tools and you don't need to learn a new language or API to start using it. Nextflow supports Docker and Singularity containers technology. This, along with the integration of the GitHub code-sharing platform, allows you to write self-contained pipelines, manage versions, and rapidly reproduce any former configuration. Nextflow provides an abstraction layer between your pipeline's logic and the execution layer.
    Starting Price: Free
  • 8
    DataOps.live

    DataOps.live

    DataOps.live

    DataOps.live, the Data Products company, delivers productivity and governance breakthroughs for data developers and teams through environment automation, pipeline orchestration, continuous testing and unified observability. We bring agile DevOps automation and a powerful unified cloud Developer Experience (DX) ​to modern cloud data platforms like Snowflake.​ DataOps.live, a global cloud-native company, is used by Global 2000 enterprises including Roche Diagnostics and OneWeb to deliver 1000s of Data Product releases per month with the speed and governance the business demands.
  • 9
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 10
    Orchestra

    Orchestra

    Orchestra

    Orchestra is a Unified Control Plane for Data and AI Operations, designed to help data teams build, deploy, and monitor workflows with ease. It offers a declarative framework that combines code and GUI, allowing users to implement workflows 10x faster and reduce maintenance time by 50%. With real-time metadata aggregation, Orchestra provides full-stack data observability, enabling proactive alerting and rapid recovery from pipeline failures. It integrates seamlessly with tools like dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and more, ensuring compatibility with existing data stacks. Orchestra's modular architecture supports AWS, Azure, and GCP, making it a versatile solution for enterprises and scale-ups aiming to streamline their data operations and build trust in their AI initiatives.
  • 11
    Data Virtuality

    Data Virtuality

    Data Virtuality

    Connect and centralize data. Transform your existing data landscape into a flexible data powerhouse. Data Virtuality is a data integration platform for instant data access, easy data centralization and data governance. Our Logical Data Warehouse solution combines data virtualization and materialization for the highest possible performance. Build your single source of data truth with a virtual layer on top of your existing data environment for high data quality, data governance, and fast time-to-market. Hosted in the cloud or on-premises. Data Virtuality has 3 modules: Pipes, Pipes Professional, and Logical Data Warehouse. Cut down your development time by up to 80%. Access any data in minutes and automate data workflows using SQL. Use Rapid BI Prototyping for significantly faster time-to-market. Ensure data quality for accurate, complete, and consistent data. Use metadata repositories to improve master data management.
  • 12
    Astro by Astronomer
    For data teams looking to increase the availability of trusted data, Astronomer provides Astro, a modern data orchestration platform, powered by Apache Airflow, that enables the entire data team to build, run, and observe data pipelines-as-code. Astronomer is the commercial developer of Airflow, the de facto standard for expressing data flows as code, used by hundreds of thousands of teams across the world.
  • 13
    Actifio

    Actifio

    Google

    Automate self-service provisioning and refresh of enterprise workloads, integrate with existing toolchain. High-performance data delivery and re-use for data scientists through a rich set of APIs and automation. Recover any data across any cloud from any point in time – at the same time – at scale, beyond legacy solutions. Minimize the business impact of ransomware / cyber attacks by recovering quickly with immutable backups. Unified platform to better protect, secure, retain, govern, or recover your data on-premises or in the cloud. Actifio’s patented software platform turns data silos into data pipelines. Virtual Data Pipeline (VDP) delivers full-stack data management — on-premises, hybrid or multi-cloud – from rich application integration, SLA-based orchestration, flexible data movement, and data immutability and security.
  • 14
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 15
    BDB Platform

    BDB Platform

    Big Data BizViz

    BDB is a modern data analytics and BI platform which can skillfully dive deep into your data to provide actionable insights. It is deployable on the cloud as well as on-premise. Our exclusive microservices based architecture has the elements of Data Preparation, Predictive, Pipeline and Dashboard designer to provide customized solutions and scalable analytics to different industries. BDB’s strong NLP based search enables the user to unleash the power of data on desktop, tablets and mobile as well. BDB has various ingrained data connectors, and it can connect to multiple commonly used data sources, applications, third party API’s, IoT, social media, etc. in real-time. It lets you connect to RDBMS, Big data, FTP/ SFTP Server, flat files, web services, etc. and manage structured, semi-structured as well as unstructured data. Start your journey to advanced analytics today.
  • 16
    Observo AI

    Observo AI

    Observo AI

    ​Observo AI is an AI-native data pipeline platform designed to address the challenges of managing vast amounts of telemetry data in security and DevOps operations. By leveraging machine learning and agentic AI, Observo AI automates data optimization, enabling enterprises to process AI-generated data more efficiently, securely, and cost-effectively. It reduces data processing costs by over 50% and accelerates incident response times by more than 40%. Observo AI's features include intelligent data deduplication and compression, real-time anomaly detection, and dynamic data routing to appropriate storage or analysis tools. It also enriches data streams with contextual information to enhance threat detection accuracy while minimizing false positives. Observo AI offers a searchable cloud data lake for efficient data storage and retrieval.
  • 17
    Onum

    Onum

    Onum

    ​Onum is a real-time data intelligence platform that empowers security and IT teams to derive actionable insights from data in-stream, facilitating rapid decision-making and operational efficiency. By processing data at the source, Onum enables decisions in milliseconds, not minutes, simplifying complex workflows and reducing costs. It offers data reduction capabilities, intelligently filtering and reducing data at the source to ensure only valuable information reaches analytics platforms, thereby minimizing storage requirements and associated costs. It also provides data enrichment features, transforming raw data into actionable intelligence by adding context and correlations in real time. Onum simplifies data pipeline management through efficient data routing, ensuring the right data is delivered to the appropriate destinations instantly, supporting various sources and destinations.
  • 18
    DataBahn

    DataBahn

    DataBahn

    DataBahn.ai is redefining how enterprises manage the explosion of security and operational data in the AI era. Our AI-powered data pipeline and fabric platform helps organizations securely collect, enrich, orchestrate, and optimize enterprise data—including security, application, observability, and IoT/OT telemetry—for analytics, automation, and AI. With native support for over 400 integrations and built-in enrichment capabilities, DataBahn streamlines fragmented data workflows and reduces SIEM and infrastructure costs from day one. The platform requires no specialist training, enabling security and IT teams to extract insights in real time and adapt quickly to new demands. We've helped Fortune 500 and Global 2000 companies reduce data processing costs by over 50% and automate more than 80% of their data engineering workloads.
  • 19
    Unravel

    Unravel

    Unravel Data

    Unravel makes data work anywhere: on Azure, AWS, GCP or in your own data center– Optimizing performance, automating troubleshooting and keeping costs in check. Unravel helps you monitor, manage, and improve your data pipelines in the cloud and on-premises – to drive more reliable performance in the applications that power your business. Get a unified view of your entire data stack. Unravel collects performance data from every platform, system, and application on any cloud then uses agentless technologies and machine learning to model your data pipelines from end to end. Explore, correlate, and analyze everything in your modern data and cloud environment. Unravel’s data model reveals dependencies, issues, and opportunities, how apps and resources are being used, what’s working and what’s not. Don’t just monitor performance – quickly troubleshoot and rapidly remediate issues. Leverage AI-powered recommendations to automate performance improvements, lower costs, and prepare.
  • 20
    Crux

    Crux

    Crux

    Find out why the heavy hitters are using the Crux external data automation platform to scale external data integration, transformation, and observability without increasing headcount. Our cloud-native data integration technology accelerates the ingestion, preparation, observability and ongoing delivery of any external dataset. The result is that we can ensure you get quality data in the right place, in the right format when you need it. Leverage automatic schema detection, delivery schedule inference, and lifecycle management to build pipelines from any external data source quickly. Enhance discoverability throughout your organization through a private catalog of linked and matched data products. Enrich, validate, and transform any dataset to quickly combine it with other data sources and accelerate analytics.
  • 21
    Adele

    Adele

    Adastra

    Adele is an intuitive platform designed to simplify the migration of data pipelines from any legacy system to a target platform. It empowers users with full control over the functional migration process, while its intelligent mapping capabilities offer valuable insights. By reverse-engineering data pipelines, Adele creates data lineage mappings and extracts metadata, enhancing visibility and understanding of data flows.
  • Previous
  • You're on page 1
  • Next