Compare the Top Data Modeling Tools that integrate with DataHub as of July 2025

This a list of Data Modeling tools that integrate with DataHub. Use the filters on the left to add additional filters for products that have integrations with DataHub. View the products that work with DataHub in the table below.

What are Data Modeling Tools for DataHub?

Data modeling tools are software tools that help organizations design, visualize, and manage data structures, relationships, and flows within databases and data systems. These tools enable data architects and engineers to create conceptual, logical, and physical data models that ensure data is organized in a way that is efficient, scalable, and aligned with business needs. Data modeling tools also provide features for defining data attributes, establishing relationships between entities, and ensuring data integrity through constraints. By automating aspects of the design and validation process, these tools help prevent errors and inconsistencies in database structures. They are essential for businesses that need to manage complex datasets and maintain data consistency across multiple platforms. Compare and read user reviews of the best Data Modeling tools for DataHub currently available using the table below. This list is updated regularly.

  • 1
    Looker

    Looker

    Google

    Looker, Google Cloud’s business intelligence platform, enables you to chat with your data. Organizations turn to Looker for self-service and governed BI, to build custom applications with trusted metrics, or to bring Looker modeling to their existing environment. The result is improved data engineering efficiency and true business transformation. Looker is reinventing business intelligence for the modern company. Looker works the way the web does: browser-based, its unique modeling language lets any employee leverage the work of your best data analysts. Operating 100% in-database, Looker capitalizes on the newest, fastest analytic databases—to get real results, in real time.
  • 2
    dbt

    dbt

    dbt Labs

    Version control, quality assurance, documentation and modularity allow data teams to collaborate like software engineering teams. Analytics errors should be treated with the same level of urgency as bugs in a production product. Much of an analytic workflow is manual. We believe workflows should be built to execute with a single command. Data teams use dbt to codify business logic and make it accessible to the entire organization—for use in reporting, ML modeling, and operational workflows. Built-in CI/CD ensures that changes to data models move appropriately through development, staging, and production environments. dbt Cloud also provides guaranteed uptime and custom SLAs.
    Starting Price: $50 per user per month
  • 3
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 4
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • Previous
  • You're on page 1
  • Next