Best Data Management Software for Oracle Machine Learning

Compare the Top Data Management Software that integrates with Oracle Machine Learning as of November 2024

This a list of Data Management software that integrates with Oracle Machine Learning. Use the filters on the left to add additional filters for products that have integrations with Oracle Machine Learning. View the products that work with Oracle Machine Learning in the table below.

What is Data Management Software for Oracle Machine Learning?

Data management software systems are software platforms that help organize, store and analyze information. They provide a secure platform for data sharing and analysis with features such as reporting, automation, visualizations, and collaboration. Data management software can be customized to fit the needs of any organization by providing numerous user options to easily access or modify data. These systems enable organizations to keep track of their data more efficiently while reducing the risk of data loss or breaches for improved business security. Compare and read user reviews of the best Data Management software for Oracle Machine Learning currently available using the table below. This list is updated regularly.

  • 1
    MySQL

    MySQL

    Oracle

    MySQL is the world's most popular open source database. With its proven performance, reliability, and ease-of-use, MySQL has become the leading database choice for web-based applications, used by high profile web properties including Facebook, Twitter, YouTube, and all five of the top five websites*. Additionally, it is an extremely popular choice as embedded database, distributed by thousands of ISVs and OEMs.
    Starting Price: Free
  • 2
    Apache Hive

    Apache Hive

    Apache Software Foundation

    The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. Apache Hive is an open source project run by volunteers at the Apache Software Foundation. Previously it was a subproject of Apache® Hadoop®, but has now graduated to become a top-level project of its own. We encourage you to learn about the project and contribute your expertise. Traditional SQL queries must be implemented in the MapReduce Java API to execute SQL applications and queries over distributed data. Hive provides the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the underlying Java without the need to implement queries in the low-level Java API.
  • 3
    Kinetica

    Kinetica

    Kinetica

    A scalable cloud database for real-time analysis on large and streaming datasets. Kinetica is designed to harness modern vectorized processors to be orders of magnitude faster and more efficient for real-time spatial and temporal workloads. Track and gain intelligence from billions of moving objects in real-time. Vectorization unlocks new levels of performance for analytics on spatial and time series data at scale. Ingest and query at the same time to act on real-time events. Kinetica's lockless architecture and distributed ingestion ensures data is available to query as soon as it lands. Vectorized processing enables you to do more with less. More power allows for simpler data structures, which lead to lower storage costs, more flexibility and less time engineering your data. Vectorized processing opens the door to amazingly fast analytics and detailed visualization of moving objects at scale.
  • 4
    Oracle Database
    Oracle database products offer customers cost-optimized and high-performance versions of Oracle Database, the world's leading converged, multi-model database management system, as well as in-memory, NoSQL, and MySQL databases. Oracle Autonomous Database, available on-premises via Oracle Cloud@Customer or in the Oracle Cloud Infrastructure, enables customers to simplify relational database environments and reduce management workloads. Oracle Autonomous Database eliminates the complexity of operating and securing Oracle Database while giving customers the highest levels of performance, scalability, and availability. Oracle Database can be deployed on-premises when customers have data residency and network latency concerns. Customers with applications that are dependent on specific Oracle database versions have complete control over the versions they run and when those versions change.
  • 5
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • Previous
  • You're on page 1
  • Next