Best Data Management Software for Domino Enterprise MLOps Platform

Compare the Top Data Management Software that integrates with Domino Enterprise MLOps Platform as of November 2024

This a list of Data Management software that integrates with Domino Enterprise MLOps Platform. Use the filters on the left to add additional filters for products that have integrations with Domino Enterprise MLOps Platform. View the products that work with Domino Enterprise MLOps Platform in the table below.

What is Data Management Software for Domino Enterprise MLOps Platform?

Data management software systems are software platforms that help organize, store and analyze information. They provide a secure platform for data sharing and analysis with features such as reporting, automation, visualizations, and collaboration. Data management software can be customized to fit the needs of any organization by providing numerous user options to easily access or modify data. These systems enable organizations to keep track of their data more efficiently while reducing the risk of data loss or breaches for improved business security. Compare and read user reviews of the best Data Management software for Domino Enterprise MLOps Platform currently available using the table below. This list is updated regularly.

  • 1
    MATLAB

    MATLAB

    The MathWorks

    MATLAB® combines a desktop environment tuned for iterative analysis and design processes with a programming language that expresses matrix and array mathematics directly. It includes the Live Editor for creating scripts that combine code, output, and formatted text in an executable notebook. MATLAB toolboxes are professionally developed, rigorously tested, and fully documented. MATLAB apps let you see how different algorithms work with your data. Iterate until you’ve got the results you want, then automatically generate a MATLAB program to reproduce or automate your work. Scale your analyses to run on clusters, GPUs, and clouds with only minor code changes. There’s no need to rewrite your code or learn big data programming and out-of-memory techniques. Automatically convert MATLAB algorithms to C/C++, HDL, and CUDA code to run on your embedded processor or FPGA/ASIC. MATLAB works with Simulink to support Model-Based Design.
  • 2
    Anaconda

    Anaconda

    Anaconda

    Empowering the enterprise to do real data science at speed and scale with a full-featured machine learning platform. Spend less time managing tools and infrastructure, so you can focus on building machine learning applications that move your business forward. Anaconda Enterprise takes the headache out of ML operations, puts open-source innovation at your fingertips, and provides the foundation for serious data science and machine learning production without locking you into specific models, templates, or workflows. Software developers and data scientists can work together with AE to build, test, debug, and deploy models using their preferred languages and tools. AE provides access to both notebooks and IDEs so developers and data scientists can work together more efficiently. They can also choose from example projects and preconfigured projects. AE projects are automatically containerized so they can be moved between environments with ease.
  • 3
    Snowflake

    Snowflake

    Snowflake

    Your cloud data platform. Secure and easy access to any data with infinite scalability. Get all the insights from all your data by all your users, with the instant and near-infinite performance, concurrency and scale your organization requires. Seamlessly share and consume shared data to collaborate across your organization, and beyond, to solve your toughest business problems in real time. Boost the productivity of your data professionals and shorten your time to value in order to deliver modern and integrated data solutions swiftly from anywhere in your organization. Whether you’re moving data into Snowflake or extracting insight out of Snowflake, our technology partners and system integrators will help you deploy Snowflake for your success.
    Starting Price: $40.00 per month
  • 4
    Okera

    Okera

    Okera

    Okera, the Universal Data Authorization company, helps modern, data-driven enterprises accelerate innovation, minimize data security risks, and demonstrate regulatory compliance. The Okera Dynamic Access Platform automatically enforces universal fine-grained access control policies. This allows employees, customers, and partners to use data responsibly, while protecting them from inappropriately accessing data that is confidential, personally identifiable, or regulated. Okera’s robust audit capabilities and data usage intelligence deliver the real-time and historical information that data security, compliance, and data delivery teams need to respond quickly to incidents, optimize processes, and analyze the performance of enterprise data initiatives. Okera began development in 2016 and now dynamically authorizes access to hundreds of petabytes of sensitive data for the world’s most demanding F100 companies and regulatory agencies. The company is headquartered in San Francisco.
  • 5
    H2O.ai

    H2O.ai

    H2O.ai

    H2O.ai is the open source leader in AI and machine learning with a mission to democratize AI for everyone. Our industry-leading enterprise-ready platforms are used by hundreds of thousands of data scientists in over 20,000 organizations globally. We empower every company to be an AI company in financial services, insurance, healthcare, telco, retail, pharmaceutical, and marketing and delivering real value and transforming businesses today.
  • 6
    NVIDIA RAPIDS
    The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes. Accelerate your Python data science toolchain with minimal code changes and no new tools to learn. Increase machine learning model accuracy by iterating on models faster and deploying them more frequently.
  • 7
    Dask

    Dask

    Dask

    Dask is open source and freely available. It is developed in coordination with other community projects like NumPy, pandas, and scikit-learn. Dask uses existing Python APIs and data structures to make it easy to switch between NumPy, pandas, scikit-learn to their Dask-powered equivalents. Dask's schedulers scale to thousand-node clusters and its algorithms have been tested on some of the largest supercomputers in the world. But you don't need a massive cluster to get started. Dask ships with schedulers designed for use on personal machines. Many people use Dask today to scale computations on their laptop, using multiple cores for computation and their disk for excess storage. Dask exposes lower-level APIs letting you build custom systems for in-house applications. This helps open source leaders parallelize their own packages and helps business leaders scale custom business logic.
  • Previous
  • You're on page 1
  • Next