Compare the Top Data Lineage Tools that integrate with Java as of October 2025

This a list of Data Lineage tools that integrate with Java. Use the filters on the left to add additional filters for products that have integrations with Java. View the products that work with Java in the table below.

What are Data Lineage Tools for Java?

Data lineage tools are software solutions designed to track and visualize the flow of data through various stages of its lifecycle, from origin to destination. These tools help organizations understand the data's journey, transformations, and dependencies across different systems and processes. They offer features such as data mapping, impact analysis, and auditing to ensure data accuracy, compliance, and governance. By providing detailed insights into data movement and transformations, data lineage tools enable better decision-making, troubleshooting, and optimization of data workflows. They are essential for maintaining data integrity and transparency in complex data environments. Compare and read user reviews of the best Data Lineage tools for Java currently available using the table below. This list is updated regularly.

  • 1
    IBM Databand
    Monitor your data health and pipeline performance. Gain unified visibility for pipelines running on cloud-native tools like Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. An observability platform purpose built for Data Engineers. Data engineering is only getting more challenging as demands from business stakeholders grow. Databand can help you catch up. More pipelines, more complexity. Data engineers are working with more complex infrastructure than ever and pushing higher speeds of release. It’s harder to understand why a process has failed, why it’s running late, and how changes affect the quality of data outputs. Data consumers are frustrated with inconsistent results, model performance, and delays in data delivery. Not knowing exactly what data is being delivered, or precisely where failures are coming from, leads to persistent lack of trust. Pipeline logs, errors, and data quality metrics are captured and stored in independent, isolated systems.
  • Previous
  • You're on page 1
  • Next