Compare the Top Data Lake Solutions in the UK as of November 2024 - Page 2

  • 1
    AnalyticsCreator

    AnalyticsCreator

    AnalyticsCreator

    AnalyticsCreator allows you to build on an existing DWH and make extensions and adjustments. If a good foundation is available, it is easy to build on top of it. Additionally, AnalyticsCreator’s reverse engineering methodology enables you to take code from an existing DWH application and integrate it into AC. This way, even more layers/areas can be included in the automation and thus support the expected change process even more extensively. The extension of a manually developed DWH (i.e., with an ETL/ELT tool) can quickly consume time and resources. From our experience and various studies that can be found on the web, the following rule can be derived, the longer the lifecycle, the higher the costs rise. With AnalyticsCreator, you can design your data model for your analytical Power BI application and automatically generate a multi-tier data warehouse with the appropriate loading strategy. In the process, the business logic is mapped in one place in AnalyticsCreator.
  • 2
    IBM watsonx.data
    Put your data to work, wherever it resides, with the open, hybrid data lakehouse for AI and analytics. Connect your data from anywhere, in any format, and access through a single point of entry with a shared metadata layer. Optimize workloads for price and performance by pairing the right workloads with the right query engine. Embed natural-language semantic search without the need for SQL, so you can unlock generative AI insights faster. Manage and prepare trusted data to improve the relevance and precision of your AI applications. Use all your data, everywhere. With the speed of a data warehouse, the flexibility of a data lake, and special features to support AI, watsonx.data can help you scale AI and analytics across your business. Choose the right engines for your workloads. Flexibly manage cost, performance, and capability with access to multiple open engines including Presto, Presto C++, Spark Milvus, and more.
  • 3
    Talend Data Fabric
    Talend Data Fabric’s suite of cloud services efficiently handles all your integration and integrity challenges — on-premises or in the cloud, any source, any endpoint. Deliver trusted data at the moment you need it — for every user, every time. Ingest and integrate data, applications, files, events and APIs from any source or endpoint to any location, on-premise and in the cloud, easier and faster with an intuitive interface and no coding. Embed quality into data management and guarantee ironclad regulatory compliance with a thoroughly collaborative, pervasive and cohesive approach to data governance. Make the most informed decisions based on high quality, trustworthy data derived from batch and real-time processing and bolstered with market-leading data cleaning and enrichment tools. Get more value from your data by making it available internally and externally. Extensive self-service capabilities make building APIs easy— improve customer engagement.
  • 4
    BryteFlow

    BryteFlow

    BryteFlow

    BryteFlow builds the most efficient automated environments for analytics ever. It converts Amazon S3 into an awesome analytics platform by leveraging the AWS ecosystem intelligently to deliver data at lightning speeds. It complements AWS Lake Formation and automates the Modern Data Architecture providing performance and productivity. You can completely automate data ingestion with BryteFlow Ingest’s simple point-and-click interface while BryteFlow XL Ingest is great for the initial full ingest for very large datasets. No coding is needed! With BryteFlow Blend you can merge data from varied sources like Oracle, SQL Server, Salesforce and SAP etc. and transform it to make it ready for Analytics and Machine Learning. BryteFlow TruData reconciles the data at the destination with the source continually or at a frequency you select. If data is missing or incomplete you get an alert so you can fix the issue easily.
  • 5
    Hadoop

    Hadoop

    Apache Software Foundation

    The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures. A wide variety of companies and organizations use Hadoop for both research and production. Users are encouraged to add themselves to the Hadoop PoweredBy wiki page. Apache Hadoop 3.3.4 incorporates a number of significant enhancements over the previous major release line (hadoop-3.2).
  • 6
    Azure Data Lake
    Azure Data Lake includes all the capabilities required to make it easy for developers, data scientists, and analysts to store data of any size, shape, and speed, and do all types of processing and analytics across platforms and languages. It removes the complexities of ingesting and storing all of your data while making it faster to get up and running with batch, streaming, and interactive analytics. Azure Data Lake works with existing IT investments for identity, management, and security for simplified data management and governance. It also integrates seamlessly with operational stores and data warehouses so you can extend current data applications. We’ve drawn on the experience of working with enterprise customers and running some of the largest scale processing and analytics in the world for Microsoft businesses like Office 365, Xbox Live, Azure, Windows, Bing, and Skype. Azure Data Lake solves many of the productivity and scalability challenges that prevent you from maximizing the
  • 7
    Delta Lake

    Delta Lake

    Delta Lake

    Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads. Data lakes typically have multiple data pipelines reading and writing data concurrently, and data engineers have to go through a tedious process to ensure data integrity, due to the lack of transactions. Delta Lake brings ACID transactions to your data lakes. It provides serializability, the strongest level of isolation level. Learn more at Diving into Delta Lake: Unpacking the Transaction Log. In big data, even the metadata itself can be "big data". Delta Lake treats metadata just like data, leveraging Spark's distributed processing power to handle all its metadata. As a result, Delta Lake can handle petabyte-scale tables with billions of partitions and files at ease. Delta Lake provides snapshots of data enabling developers to access and revert to earlier versions of data for audits, rollbacks or to reproduce experiments.
  • 8
    Kylo

    Kylo

    Teradata

    Kylo is an open source enterprise-ready data lake management software platform for self-service data ingest and data preparation with integrated metadata management, governance, security and best practices inspired by Think Big's 150+ big data implementation projects. Self-service data ingest with data cleansing, validation, and automatic profiling. Wrangle data with visual sql and an interactive transform through a simple user interface. Search and explore data and metadata, view lineage, and profile statistics. Monitor health of feeds and services in the data lake. Track SLAs and troubleshoot performance. Design batch or streaming pipeline templates in Apache NiFi and register with Kylo to enable user self-service. Organizations can expend significant engineering effort moving data into Hadoop yet struggle to maintain governance and data quality. Kylo dramatically simplifies data ingest by shifting ingest to data owners through a simple guided UI.
  • 9
    Zaloni Arena
    End-to-end DataOps built on an agile platform that improves and safeguards your data assets. Arena is the premier augmented data management platform. Our active data catalog enables self-service data enrichment and consumption to quickly control complex data environments. Customizable workflows that increase the accuracy and reliability of every data set. Use machine-learning to identify and align master data assets for better data decisioning. Complete lineage with detailed visualizations alongside masking and tokenization for superior security. We make data management easy. Arena catalogs your data, wherever it is and our extensible connections enable analytics to happen across your preferred tools. Conquer data sprawl challenges: Our software drives business and analytics success while providing the controls and extensibility needed across today’s decentralized, multi-cloud data complexity.
  • 10
    Cortex Data Lake
    Collect, transform and integrate your enterprise’s security data to enable Palo Alto Networks solutions. Radically simplify security operations by collecting, transforming and integrating your enterprise’s security data. Facilitate AI and machine learning with access to rich data at cloud native scale. Significantly improve detection accuracy with trillions of multi-source artifacts. Cortex XDR™ is the industry’s only prevention, detection, and response platform that runs on fully integrated endpoint, network and cloud data. Prisma™ Access protects your applications, remote networks and mobile users in a consistent manner, wherever they are. A cloud-delivered architecture connects all users to all applications, whether they’re at headquarters, branch offices or on the road. The combination of Cortex™ Data Lake and Panorama™ management delivers an economical, cloud-based logging solution for Palo Alto Networks Next-Generation Firewalls. Zero hardware, cloud scale, available anywhere.
  • 11
    Azure Data Lake Storage
    Eliminate data silos with a single storage platform. Optimize costs with tiered storage and policy management. Authenticate data using Azure Active Directory (Azure AD) and role-based access control (RBAC). And help protect data with security features like encryption at rest and advanced threat protection. Highly secure with flexible mechanisms for protection across data access, encryption, and network-level control. Single storage platform for ingestion, processing, and visualization that supports the most common analytics frameworks. Cost optimization via independent scaling of storage and compute, lifecycle policy management, and object-level tiering. Meet any capacity requirements and manage data with ease, with the Azure global infrastructure. Run large-scale analytics queries at consistently high performance.
  • 12
    Varada

    Varada

    Varada

    Varada’s dynamic and adaptive big data indexing solution enables to balance performance and cost with zero data-ops. Varada’s unique big data indexing technology serves as a smart acceleration layer on your data lake, which remains the single source of truth, and runs in the customer cloud environment (VPC). Varada enables data teams to democratize data by operationalizing the entire data lake while ensuring interactive performance, without the need to move data, model or manually optimize. Our secret sauce is our ability to automatically and dynamically index relevant data, at the structure and granularity of the source. Varada enables any query to meet continuously evolving performance and concurrency requirements for users and analytics API calls, while keeping costs predictable and under control. The platform seamlessly chooses which queries to accelerate and which data to index. Varada elastically adjusts the cluster to meet demand and optimize cost and performance.
  • 13
    Data Lake on AWS
    Many Amazon Web Services (AWS) customers require a data storage and analytics solution that offers more agility and flexibility than traditional data management systems. A data lake is a new and increasingly popular way to store and analyze data because it allows companies to manage multiple data types from a wide variety of sources, and store this data, structured and unstructured, in a centralized repository. The AWS Cloud provides many of the building blocks required to help customers implement a secure, flexible, and cost-effective data lake. These include AWS managed services that help ingest, store, find, process, and analyze both structured and unstructured data. To support our customers as they build data lakes, AWS offers the data lake solution, which is an automated reference implementation that deploys a highly available, cost-effective data lake architecture on the AWS Cloud along with a user-friendly console for searching and requesting datasets.
  • 14
    AWS Lake Formation
    AWS Lake Formation is a service that makes it easy to set up a secure data lake in days. A data lake is a centralized, curated, and secured repository that stores all your data, both in its original form and prepared for analysis. A data lake lets you break down data silos and combine different types of analytics to gain insights and guide better business decisions. Setting up and managing data lakes today involves a lot of manual, complicated, and time-consuming tasks. This work includes loading data from diverse sources, monitoring those data flows, setting up partitions, turning on encryption and managing keys, defining transformation jobs and monitoring their operation, reorganizing data into a columnar format, deduplicating redundant data, and matching linked records. Once data has been loaded into the data lake, you need to grant fine-grained access to datasets, and audit access over time across a wide range of analytics and machine learning (ML) tools and services.
  • 15
    Oracle Cloud Infrastructure Data Lakehouse
    A data lakehouse is a modern, open architecture that enables you to store, understand, and analyze all your data. It combines the power and richness of data warehouses with the breadth and flexibility of the most popular open source data technologies you use today. A data lakehouse can be built from the ground up on Oracle Cloud Infrastructure (OCI) to work with the latest AI frameworks and prebuilt AI services like Oracle’s language service. Data Flow is a serverless Spark service that enables our customers to focus on their Spark workloads with zero infrastructure concepts. Oracle customers want to build advanced, machine learning-based analytics over their Oracle SaaS data, or any SaaS data. Our easy- to-use data integration connectors for Oracle SaaS, make creating a lakehouse to analyze all data with your SaaS data easy and reduces time to solution.
  • 16
    Alibaba Cloud Data Lake Formation
    A data lake is a centralized repository used for big data and AI computing. It allows you to store structured and unstructured data at any scale. Data Lake Formation (DLF) is a key component of the cloud-native data lake framework. DLF provides an easy way to build a cloud-native data lake. It seamlessly integrates with a variety of compute engines and allows you to manage the metadata in data lakes in a centralized manner and control enterprise-class permissions. Systematically collects structured, semi-structured, and unstructured data and supports massive data storage. Uses an architecture that separates computing from storage. You can plan resources on demand at low costs. This improves data processing efficiency to meet the rapidly changing business requirements. DLF can automatically discover and collect metadata from multiple engines and manage the metadata in a centralized manner to solve the data silo issues.
  • 17
    FutureAnalytica

    FutureAnalytica

    FutureAnalytica

    Ours is the world’s first & only end-to-end platform for all your AI-powered innovation needs — right from data cleansing & structuring, to creating & deploying advanced data-science models, to infusing advanced analytics algorithms with built-in Recommendation AI, to deducing the outcomes with easy-to-deduce visualization dashboards, as well as Explainable AI to backtrack how the outcomes were derived, our no-code AI platform can do it all! Our platform offers a holistic, seamless data science experience. With key features like a robust Data Lakehouse, a unique AI Studio, a comprehensive AI Marketplace, and a world-class data-science support team (on a need basis), FutureAnalytica is geared to reduce your time, efforts & costs across your data-science & AI journey. Initiate discussions with the leadership, followed by a quick technology assessment in 1–3 days. Build ready-to-integrate AI solutions using FA's fully automated data science & AI platform in 10–18 days.
  • 18
    Archon Data Store

    Archon Data Store

    Platform 3 Solutions

    Archon Data Store™ is a powerful and secure open-source based archive lakehouse platform designed to store, manage, and provide insights from massive volumes of data. With its compliance features and minimal footprint, it enables large-scale search, processing, and analysis of structured, unstructured, & semi-structured data across your organization. Archon Data Store combines the best features of data warehouses and data lakes into a single, simplified platform. This unified approach eliminates data silos, streamlining data engineering, analytics, data science, and machine learning workflows. Through metadata centralization, optimized data storage, and distributed computing, Archon Data Store maintains data integrity. Its common approach to data management, security, and governance helps you operate more efficiently and innovate faster. Archon Data Store provides a single platform for archiving and analyzing all your organization's data while delivering operational efficiencies.
  • 19
    e6data

    e6data

    e6data

    Limited competition due to deep barriers to entry, specialized know-how, massive capital needs, and long time-to-market. Existing platforms are indistinguishable in price, and performance reducing the incentive to switch. Migrating from one engine’s SQL dialect to another engine’s SQL involves months of effort. Truly format-neutral computing, interoperable with all major open standards. Enterprise data leaders are hit by an unprecedented explosion in computing demand for data intelligence. They are surprised to find that 10% of their heavy, compute-intensive use cases consume 80% of the cost, engineering effort and stakeholder complaints. Unfortunately, such workloads are also mission-critical and non-discretionary. e6data amplifies ROI on enterprises' existing data platforms and architecture. e6data’s truly format-neutral compute has the unique distinction of being equally efficient and performant across leading data lakehouse table formats.
  • 20
    Informatica Intelligent Data Management Cloud
    Our AI-powered Intelligent Data Platform is the industry's most comprehensive and modular platform. It helps you unleash the value of data across your enterprise—and empowers you to solve your most complex problems. Our platform defines a new standard for enterprise-class data management. We deliver best-in-class products and an integrated platform that unifies them, so you can power your business with intelligent data. Connect to any data from any source—and scale with confidence. You’re backed by a global platform that processes over 15 trillion cloud transactions every month. Future-proof your business with an end-to-end platform that delivers trusted data at scale across data management use cases. Our AI-powered architecture supports integration patterns and allows you to grow and evolve at your own speed. Our solution is modular, microservices-based and API-driven.
  • 21
    Dremio

    Dremio

    Dremio

    Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable.
  • 22
    Lentiq

    Lentiq

    Lentiq

    Lentiq is a collaborative data lake as a service environment that’s built to enable small teams to do big things. Quickly run data science, machine learning and data analysis at scale in the cloud of your choice. With Lentiq, your teams can ingest data in real time and then process, clean and share it. From there, Lentiq makes it possible to build, train and share models internally. Simply put, data teams can collaborate with Lentiq and innovate with no restrictions. Data lakes are storage and processing environments, which provide ML, ETL, schema-on-read querying capabilities and so much more. Are you working on some data science magic? You definitely need a data lake. In the Post-Hadoop era, the big, centralized data lake is a thing of the past. With Lentiq, we use data pools, which are multi-cloud, interconnected mini-data lakes. They work together to give you a stable, secure and fast data science environment.