Best Data Lake Solutions for Amazon SageMaker

Compare the Top Data Lake Solutions that integrate with Amazon SageMaker as of August 2025

This a list of Data Lake solutions that integrate with Amazon SageMaker. Use the filters on the left to add additional filters for products that have integrations with Amazon SageMaker. View the products that work with Amazon SageMaker in the table below.

What are Data Lake Solutions for Amazon SageMaker?

Data lake solutions are platforms designed to store and manage large volumes of structured, semi-structured, and unstructured data in its raw form. Unlike traditional databases, data lakes allow businesses to store data in its native format without the need for preprocessing or schema definition upfront. These solutions provide scalability, flexibility, and high-performance capabilities for handling vast amounts of diverse data, including logs, multimedia, social media posts, sensor data, and more. Data lake solutions typically offer tools for data ingestion, storage, management, analytics, and governance, making them essential for big data analytics, machine learning, and real-time data processing. By consolidating data from various sources, data lakes help organizations gain deeper insights and drive data-driven decision-making. Compare and read user reviews of the best Data Lake solutions for Amazon SageMaker currently available using the table below. This list is updated regularly.

  • 1
    JFrog ML
    JFrog ML (formerly Qwak) offers an MLOps platform designed to accelerate the development, deployment, and monitoring of machine learning and AI applications at scale. The platform enables organizations to manage the entire lifecycle of machine learning models, from training to deployment, with tools for model versioning, monitoring, and performance tracking. It supports a wide variety of AI models, including generative AI and LLMs (Large Language Models), and provides an intuitive interface for managing prompts, workflows, and feature engineering. JFrog ML helps businesses streamline their ML operations and scale AI applications efficiently, with integrated support for cloud environments.
  • Previous
  • You're on page 1
  • Next