Best Data Engineering Tools in New Zealand - Page 3

Compare the Top Data Engineering Tools in New Zealand as of November 2024 - Page 3

  • 1
    Kodex

    Kodex

    Kodex

    Privacy engineering is an emerging field that has intersections with data engineering, information security, software development, and privacy law. Its goal is to ensure that personal data is stored and processed in a legally compliant way that respects and protects the privacy of the individuals this data belongs in the best possible way. Security engineering is on one hand a requirement for privacy engineering but also an independent discipline that aims to guarantee the secure processing and storage of sensitive data in general. If your organization processes data that is either sensitive or personal (or both), you need privacy & security engineering. This is especially true if you do your own data engineering or data science.
  • 2
    Archon Data Store

    Archon Data Store

    Platform 3 Solutions

    Archon Data Store™ is a powerful and secure open-source based archive lakehouse platform designed to store, manage, and provide insights from massive volumes of data. With its compliance features and minimal footprint, it enables large-scale search, processing, and analysis of structured, unstructured, & semi-structured data across your organization. Archon Data Store combines the best features of data warehouses and data lakes into a single, simplified platform. This unified approach eliminates data silos, streamlining data engineering, analytics, data science, and machine learning workflows. Through metadata centralization, optimized data storage, and distributed computing, Archon Data Store maintains data integrity. Its common approach to data management, security, and governance helps you operate more efficiently and innovate faster. Archon Data Store provides a single platform for archiving and analyzing all your organization's data while delivering operational efficiencies.
  • 3
    Google Cloud Dataflow
    Unified stream and batch data processing that's serverless, fast, and cost-effective. Fully managed data processing service. Automated provisioning and management of processing resources. Horizontal autoscaling of worker resources to maximize resource utilization. OSS community-driven innovation with Apache Beam SDK. Reliable and consistent exactly-once processing. Streaming data analytics with speed. Dataflow enables fast, simplified streaming data pipeline development with lower data latency. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Dataflow automates provisioning and management of processing resources to minimize latency and maximize utilization.
  • 4
    The Autonomous Data Engine
    There is a consistent “buzz” today about how leading companies are harnessing big data for competitive advantage. Your organization is striving to become one of those market-leading companies. However, the reality is that over 80% of big data projects fail to deploy to production because project implementation is a complex, resource-intensive effort that takes months or even years. The technology is complicated, and the people who have the necessary skills are either extremely expensive or impossible to find. Automates the complete data workflow from source to consumption. Automates migration of data and workloads from legacy Data Warehouse systems to big data platforms. Automates orchestration and management of complex data pipelines in production. Alternative approaches such as stitching together multiple point solutions or custom development are expensive, inflexible, time-consuming and require specialized skills to assemble and maintain.
  • 5
    Dremio

    Dremio

    Dremio

    Dremio delivers lightning-fast queries and a self-service semantic layer directly on your data lake storage. No moving data to proprietary data warehouses, no cubes, no aggregation tables or extracts. Just flexibility and control for data architects, and self-service for data consumers. Dremio technologies like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining work alongside Apache Arrow to make queries on your data lake storage very, very fast. An abstraction layer enables IT to apply security and business meaning, while enabling analysts and data scientists to explore data and derive new virtual datasets. Dremio’s semantic layer is an integrated, searchable catalog that indexes all of your metadata, so business users can easily make sense of your data. Virtual datasets and spaces make up the semantic layer, and are all indexed and searchable.
  • 6
    Innodata

    Innodata

    Innodata

    We Make Data for the World's Most Valuable Companies Innodata solves your toughest data engineering challenges using artificial intelligence and human expertise. Innodata provides the services and solutions you need to harness digital data at scale and drive digital disruption in your industry. We securely and efficiently collect & label your most complex and sensitive data, delivering near-100% accurate ground truth for AI and ML models. Our easy-to-use API ingests your unstructured data (such as contracts and medical records) and generates normalized, schema-compliant structured XML for your downstream applications and analytics. We ensure that your mission-critical databases are accurate and always up-to-date.