Compare the Top Data Engineering Tools that integrate with Python as of June 2025

This a list of Data Engineering tools that integrate with Python. Use the filters on the left to add additional filters for products that have integrations with Python. View the products that work with Python in the table below.

What are Data Engineering Tools for Python?

Data engineering tools are designed to facilitate the process of preparing and managing large datasets for analysis. These tools support tasks like data extraction, transformation, and loading (ETL), allowing engineers to build efficient data pipelines that move and process data from various sources into storage systems. They help ensure data integrity and quality by providing features for validation, cleansing, and monitoring. Data engineering tools also often include capabilities for automation, scalability, and integration with big data platforms. By streamlining complex workflows, they enable organizations to handle large-scale data operations more efficiently and support advanced analytics and machine learning initiatives. Compare and read user reviews of the best Data Engineering tools for Python currently available using the table below. This list is updated regularly.

  • 1
    Peliqan

    Peliqan

    Peliqan

    Peliqan.io is an all-in-one data platform for business teams, startups, scale-ups and IT service companies - no data engineer needed. Easily connect to databases, data warehouses and SaaS business applications. Explore and combine data in a spreadsheet UI. Business users can combine data from multiple sources, clean the data, make edits in personal copies and apply transformations. Power users can use "SQL on anything" and developers can use low-code to build interactive data apps, implement writebacks and apply machine learning. Key Features: Wide range of connectors: Integrates with over 100+ data sources and applications. Spreadsheet UI and magical SQL: Explore data in a rich spreadsheet UI. Use Magical SQL to combine and transform data. Use your favorite BI tool such as Microsoft Power BI or Metabase. Data Activation: Create data apps in minutes. Implement data alerts, distribute custom reports by email (PDF, Excel) , implement Reverse ETL flows and much more.
    Starting Price: $199
  • 2
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 3
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 4
    IBM Databand
    Monitor your data health and pipeline performance. Gain unified visibility for pipelines running on cloud-native tools like Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. An observability platform purpose built for Data Engineers. Data engineering is only getting more challenging as demands from business stakeholders grow. Databand can help you catch up. More pipelines, more complexity. Data engineers are working with more complex infrastructure than ever and pushing higher speeds of release. It’s harder to understand why a process has failed, why it’s running late, and how changes affect the quality of data outputs. Data consumers are frustrated with inconsistent results, model performance, and delays in data delivery. Not knowing exactly what data is being delivered, or precisely where failures are coming from, leads to persistent lack of trust. Pipeline logs, errors, and data quality metrics are captured and stored in independent, isolated systems.
  • 5
    Feast

    Feast

    Tecton

    Make your offline data available for real-time predictions without having to build custom pipelines. Ensure data consistency between offline training and online inference, eliminating train-serve skew. Standardize data engineering workflows under one consistent framework. Teams use Feast as the foundation of their internal ML platforms. Feast doesn’t require the deployment and management of dedicated infrastructure. Instead, it reuses existing infrastructure and spins up new resources when needed. You are not looking for a managed solution and are willing to manage and maintain your own implementation. You have engineers that are able to support the implementation and management of Feast. You want to run pipelines that transform raw data into features in a separate system and integrate with it. You have unique requirements and want to build on top of an open source solution.
  • 6
    Vaex

    Vaex

    Vaex

    At Vaex.io we aim to democratize big data and make it available to anyone, on any machine, at any scale. Cut development time by 80%, your prototype is your solution. Create automatic pipelines for any model. Empower your data scientists. Turn any laptop into a big data powerhouse, no clusters, no engineers. We provide reliable and fast data driven solutions. With our state-of-the-art technology we build and deploy machine learning models faster than anyone on the market. Turn your data scientist into big data engineers. We provide comprehensive training of your employees, enabling you to take full advantage of our technology. Combines memory mapping, a sophisticated expression system, and fast out-of-core algorithms. Efficiently visualize and explore big datasets, and build machine learning models on a single machine.
  • 7
    Kestra

    Kestra

    Kestra

    Kestra is an open-source, event-driven orchestrator that simplifies data operations and improves collaboration between engineers and business users. By bringing Infrastructure as Code best practices to data pipelines, Kestra allows you to build reliable workflows and manage them with confidence. Thanks to the declarative YAML interface for defining orchestration logic, everyone who benefits from analytics can participate in the data pipeline creation process. The UI automatically adjusts the YAML definition any time you make changes to a workflow from the UI or via an API call. Therefore, the orchestration logic is defined declaratively in code, even if some workflow components are modified in other ways.
  • 8
    Roseman Labs

    Roseman Labs

    Roseman Labs

    Roseman Labs enables you to encrypt, link, and analyze multiple data sets while safeguarding the privacy and commercial sensitivity of the actual data. This allows you to combine data sets from several parties, analyze them, and get the insights you need to optimize your processes. Tap into the unused potential of your data. With Roseman Labs, you have the power of cryptography at your fingertips through the simplicity of Python. Encrypting sensitive data allows you to analyze it while safeguarding privacy, protecting commercial sensitivity, and adhering to GDPR regulations. Generate insights from personal or commercially sensitive information, with enhanced GDPR compliance. Ensure data privacy with state-of-the-art encryption. Roseman Labs allows you to link data sets from several parties. By analyzing the combined data, you'll be able to discover which records appear in several data sets, allowing for new patterns to emerge.
  • Previous
  • You're on page 1
  • Next