Best Data Engineering Tools for Microsoft Azure

Compare the Top Data Engineering Tools that integrate with Microsoft Azure as of July 2025

This a list of Data Engineering tools that integrate with Microsoft Azure. Use the filters on the left to add additional filters for products that have integrations with Microsoft Azure. View the products that work with Microsoft Azure in the table below.

What are Data Engineering Tools for Microsoft Azure?

Data engineering tools are designed to facilitate the process of preparing and managing large datasets for analysis. These tools support tasks like data extraction, transformation, and loading (ETL), allowing engineers to build efficient data pipelines that move and process data from various sources into storage systems. They help ensure data integrity and quality by providing features for validation, cleansing, and monitoring. Data engineering tools also often include capabilities for automation, scalability, and integration with big data platforms. By streamlining complex workflows, they enable organizations to handle large-scale data operations more efficiently and support advanced analytics and machine learning initiatives. Compare and read user reviews of the best Data Engineering tools for Microsoft Azure currently available using the table below. This list is updated regularly.

  • 1
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Tool
    Visit Website
  • 2
    AnalyticsCreator

    AnalyticsCreator

    AnalyticsCreator

    Streamline your data engineering workflows with AnalyticsCreator by automating the design and deployment of robust data pipelines for databases, warehouses, lakes, and cloud services. The faster pipeline deployment ensures seamless connectivity across your ecosystem, improving innovation with modern engineering practices. Integrate a wide range of data sources and targets effortlessly, ensuring seamless ecosystem connectivity. Improve development cycles with automated documentation, lineage tracking, and schema evolution. Support modern engineering practices such as CI/CD and agile methodologies to accelerate collaboration and innovation across teams.
    View Tool
    Visit Website
  • 3
    Composable DataOps Platform

    Composable DataOps Platform

    Composable Analytics

    Composable is an enterprise-grade DataOps platform built for business users that want to architect data intelligence solutions and deliver operational data-driven products leveraging disparate data sources, live feeds, and event data regardless of the format or structure of the data. With a modern, intuitive dataflow visual designer, built-in services to facilitate data engineering, and a composable architecture that enables abstraction and integration of any software or analytical approach, Composable is the leading integrated development environment to discover, manage, transform and analyze enterprise data.
    Starting Price: $8/hr - pay-as-you-go
  • 4
    Sifflet

    Sifflet

    Sifflet

    Automatically cover thousands of tables with ML-based anomaly detection and 50+ custom metrics. Comprehensive data and metadata monitoring. Exhaustive mapping of all dependencies between assets, from ingestion to BI. Enhanced productivity and collaboration between data engineers and data consumers. Sifflet seamlessly integrates into your data sources and preferred tools and can run on AWS, Google Cloud Platform, and Microsoft Azure. Keep an eye on the health of your data and alert the team when quality criteria aren’t met. Set up in a few clicks the fundamental coverage of all your tables. Configure the frequency of runs, their criticality, and even customized notifications at the same time. Leverage ML-based rules to detect any anomaly in your data. No need for an initial configuration. A unique model for each rule learns from historical data and from user feedback. Complement the automated rules with a library of 50+ templates that can be applied to any asset.
  • 5
    Qrvey

    Qrvey

    Qrvey

    Qrvey is the only solution for embedded analytics with a built-in data lake. Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application. Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less. Qrvey’s multi-tenant data lake includes: - Elasticsearch as the analytics engine - A unified data pipeline for ingestion and transformation - A complete semantic layer for simple user and data security integration Qrvey’s embedded visualizations support everything from: - standard dashboards and templates - self-service reporting - user-level personalization - individual dataset creation - data-driven workflow automation Qrvey delivers this as a self-hosted package for cloud environments. This offers the best security as your data never leaves your environment while offering a better analytics experience to users. Less time and money on analytics
  • 6
    Prophecy

    Prophecy

    Prophecy

    Prophecy enables many more users - including visual ETL developers and Data Analysts. All you need to do is point-and-click and write a few SQL expressions to create your pipelines. As you use the Low-Code designer to build your workflows - you are developing high quality, readable code for Spark and Airflow that is committed to your Git. Prophecy gives you a gem builder - for you to quickly develop and rollout your own Frameworks. Examples are Data Quality, Encryption, new Sources and Targets that extend the built-in ones. Prophecy provides best practices and infrastructure as managed services – making your life and operations simple! With Prophecy, your workflows are high performance and use scale-out performance & scalability of the cloud.
    Starting Price: $299 per month
  • 7
    Ascend

    Ascend

    Ascend

    Ascend gives data teams a unified and automated platform to ingest, transform, and orchestrate their entire data engineering and analytics engineering workloads, 10X faster than ever before.​ Ascend helps gridlocked teams break through constraints to build, manage, and optimize the increasing number of data workloads required. Backed by DataAware intelligence, Ascend works continuously in the background to guarantee data integrity and optimize data workloads, reducing time spent on maintenance by up to 90%. Build, iterate on, and run data transformations easily with Ascend’s multi-language flex-code interface enabling the use of SQL, Python, Java, and, Scala interchangeably. Quickly view data lineage, data profiles, job and user logs, system health, and other critical workload metrics at a glance. Ascend delivers native connections to a growing library of common data sources with our Flex-Code data connectors.
    Starting Price: $0.98 per DFC
  • 8
    DQOps

    DQOps

    DQOps

    DQOps is an open-source data quality platform designed for data quality and data engineering teams that makes data quality visible to business sponsors. The platform provides an efficient user interface to quickly add data sources, configure data quality checks, and manage issues. DQOps comes with over 150 built-in data quality checks, but you can also design custom checks to detect any business-relevant data quality issues. The platform supports incremental data quality monitoring to support analyzing data quality of very big tables. Track data quality KPI scores using our built-in or custom dashboards to show progress in improving data quality to business sponsors. DQOps is DevOps-friendly, allowing you to define data quality definitions in YAML files stored in Git, run data quality checks directly from your data pipelines, or automate any action with a Python Client. DQOps works locally or as a SaaS platform.
    Starting Price: $499 per month
  • 9
    Iterative

    Iterative

    Iterative

    AI teams face challenges that require new technologies. We build these technologies. Existing data warehouses and data lakes do not fit unstructured datasets like text, images, and videos. AI hand in hand with software development. Built with data scientists, ML engineers, and data engineers in mind. Don’t reinvent the wheel! Fast and cost‑efficient path to production. Your data is always stored by you. Your models are trained on your machines. Existing data warehouses and data lakes do not fit unstructured datasets like text, images, and videos. AI teams face challenges that require new technologies. We build these technologies. Studio is an extension of GitHub, GitLab or BitBucket. Sign up for the online SaaS version or contact us to get on-premise installation
  • 10
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 11
    IBM Databand
    Monitor your data health and pipeline performance. Gain unified visibility for pipelines running on cloud-native tools like Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. An observability platform purpose built for Data Engineers. Data engineering is only getting more challenging as demands from business stakeholders grow. Databand can help you catch up. More pipelines, more complexity. Data engineers are working with more complex infrastructure than ever and pushing higher speeds of release. It’s harder to understand why a process has failed, why it’s running late, and how changes affect the quality of data outputs. Data consumers are frustrated with inconsistent results, model performance, and delays in data delivery. Not knowing exactly what data is being delivered, or precisely where failures are coming from, leads to persistent lack of trust. Pipeline logs, errors, and data quality metrics are captured and stored in independent, isolated systems.
  • 12
    Foghub

    Foghub

    Foghub

    Simplified IT/OT Integration, Data Engineering & Real-Time Edge Intelligence. Easy to use, cross-platform, open architecture, edge computing for industrial time-series data. Foghub offers the Critical-Path to IT/OT convergence, connecting Operations (Sensors, Devices, and Systems) with Business (People, Processes, and Applications), enabling automated data acquisition, data engineering, transformations, advanced analytics and ML. Handle large variety, volume, and velocity of industrial data with out-of-the-box support for all data types, most popular industrial network protocols, OT/lab systems, and databases. Easily automate the collection of data about your production runs, batches, parts, cycle-times, process parameters, asset condition, performance, health, utilities, consumables as well as operators and their performance. Designed for scale, Foghub offers a comprehensive set of capabilities to handle large volumes and velocity of data.
  • 13
    witboost

    witboost

    Agile Lab

    witboost is a modular, scalable, fast, efficient data management system for your company to truly become data driven, reduce time-to-market, it expenditures and overheads. witboost comprises a series of modules. These are building blocks that can work as standalone solutions to address and solve a single need or problem, or they can be combined to create the perfect data management ecosystem for your company. Each module improves a specific data engineering function and they can be combined to create the perfect solution to answer your specific needs, guaranteeing a blazingly fact and smooth implementation, thus dramatically reducing time-to-market, time-to-value and consequently the TCO of your data engineering infrastructure. Smart Cities need digital twins to predict needs and avoid unforeseen problems, gathering data from thousands of sources and managing ever more complex telematics.
  • 14
    DataSentics

    DataSentics

    DataSentics

    Making data science & machine learning have a real impact on organizations. We are an AI product studio, a group of 100 experienced data scientists and data engineers with a combination of experience both from the agile world of digital start-ups as well as major international corporations. We don’t end with nice slides and dashboards. The result that counts is an automated data solution in production integrated inside a real process. We do not report clickers but data scientists and data engineers. We have a strong focus on productionalizing data science solutions in the cloud with high standards of CI and automation. Building the greatest concentration of the smartest and most creative data scientists and engineers by being the most exciting and fulfilling place for them to work in Central Europe. Giving them the freedom to use our critical mass of expertise to find and iterate on the most promising data-driven opportunities, both for our clients and our own products.
  • Previous
  • You're on page 1
  • Next