Compare the Top Data Engineering Tools that integrate with Hadoop as of December 2025

This a list of Data Engineering tools that integrate with Hadoop. Use the filters on the left to add additional filters for products that have integrations with Hadoop. View the products that work with Hadoop in the table below.

What are Data Engineering Tools for Hadoop?

Data engineering tools are designed to facilitate the process of preparing and managing large datasets for analysis. These tools support tasks like data extraction, transformation, and loading (ETL), allowing engineers to build efficient data pipelines that move and process data from various sources into storage systems. They help ensure data integrity and quality by providing features for validation, cleansing, and monitoring. Data engineering tools also often include capabilities for automation, scalability, and integration with big data platforms. By streamlining complex workflows, they enable organizations to handle large-scale data operations more efficiently and support advanced analytics and machine learning initiatives. Compare and read user reviews of the best Data Engineering tools for Hadoop currently available using the table below. This list is updated regularly.

  • 1
    AnalyticsCreator

    AnalyticsCreator

    AnalyticsCreator

    Streamline your data engineering workflows with AnalyticsCreator by automating the design and deployment of robust data pipelines for databases, warehouses, lakes, and cloud services. The faster pipeline deployment ensures seamless connectivity across your ecosystem, improving innovation with modern engineering practices. Integrate a wide range of data sources and targets effortlessly, ensuring seamless ecosystem connectivity. Improve development cycles with automated documentation, lineage tracking, and schema evolution. Support modern engineering practices such as CI/CD and agile methodologies to accelerate collaboration and innovation across teams.
    Partner badge
    View Tool
    Visit Website
  • 2
    Composable DataOps Platform

    Composable DataOps Platform

    Composable Analytics

    Composable is an enterprise-grade DataOps platform built for business users that want to architect data intelligence solutions and deliver operational data-driven products leveraging disparate data sources, live feeds, and event data regardless of the format or structure of the data. With a modern, intuitive dataflow visual designer, built-in services to facilitate data engineering, and a composable architecture that enables abstraction and integration of any software or analytical approach, Composable is the leading integrated development environment to discover, manage, transform and analyze enterprise data.
    Starting Price: $8/hr - pay-as-you-go
  • 3
    Peekdata

    Peekdata

    Peekdata

    Consume data from any database, organize it into consistent metrics, and use it with every app. Build your Data and Reporting APIs faster with automated SQL generation, query optimization, access control, consistent metrics definitions, and API design. It takes only days to wrap any data source with a single reference Data API and simplify access to reporting and analytics data across your teams. Make it easy for data engineers and application developers to access the data from any source in a streamlined manner. - The single schema-less Data API endpoint - Review and configure metrics and dimensions in one place via UI - Data model visualization to make faster decisions - Data Export management scheduling AP Ready-to-use Report Builder and JavaScript components for charting libraries (Highcharts, BizCharts, Chart.js, etc.) makes it easy to embed data-rich functionality into your products. And you will not have to make custom report queries anymore!
    Starting Price: $349 per month
  • 4
    Dataplane

    Dataplane

    Dataplane

    The concept behind Dataplane is to make it quicker and easier to construct a data mesh with robust data pipelines and automated workflows for businesses and teams of all sizes. In addition to being more user friendly, there has been an emphasis on scaling, resilience, performance and security.
    Starting Price: Free
  • 5
    Foghub

    Foghub

    Foghub

    Simplified IT/OT Integration, Data Engineering & Real-Time Edge Intelligence. Easy to use, cross-platform, open architecture, edge computing for industrial time-series data. Foghub offers the Critical-Path to IT/OT convergence, connecting Operations (Sensors, Devices, and Systems) with Business (People, Processes, and Applications), enabling automated data acquisition, data engineering, transformations, advanced analytics and ML. Handle large variety, volume, and velocity of industrial data with out-of-the-box support for all data types, most popular industrial network protocols, OT/lab systems, and databases. Easily automate the collection of data about your production runs, batches, parts, cycle-times, process parameters, asset condition, performance, health, utilities, consumables as well as operators and their performance. Designed for scale, Foghub offers a comprehensive set of capabilities to handle large volumes and velocity of data.
  • 6
    witboost

    witboost

    Agile Lab

    witboost is a modular, scalable, fast, efficient data management system for your company to truly become data driven, reduce time-to-market, it expenditures and overheads. witboost comprises a series of modules. These are building blocks that can work as standalone solutions to address and solve a single need or problem, or they can be combined to create the perfect data management ecosystem for your company. Each module improves a specific data engineering function and they can be combined to create the perfect solution to answer your specific needs, guaranteeing a blazingly fact and smooth implementation, thus dramatically reducing time-to-market, time-to-value and consequently the TCO of your data engineering infrastructure. Smart Cities need digital twins to predict needs and avoid unforeseen problems, gathering data from thousands of sources and managing ever more complex telematics.
  • Previous
  • You're on page 1
  • Next