Best Data Engineering Tools for Databricks Data Intelligence Platform

Compare the Top Data Engineering Tools that integrate with Databricks Data Intelligence Platform as of July 2025

This a list of Data Engineering tools that integrate with Databricks Data Intelligence Platform. Use the filters on the left to add additional filters for products that have integrations with Databricks Data Intelligence Platform. View the products that work with Databricks Data Intelligence Platform in the table below.

What are Data Engineering Tools for Databricks Data Intelligence Platform?

Data engineering tools are designed to facilitate the process of preparing and managing large datasets for analysis. These tools support tasks like data extraction, transformation, and loading (ETL), allowing engineers to build efficient data pipelines that move and process data from various sources into storage systems. They help ensure data integrity and quality by providing features for validation, cleansing, and monitoring. Data engineering tools also often include capabilities for automation, scalability, and integration with big data platforms. By streamlining complex workflows, they enable organizations to handle large-scale data operations more efficiently and support advanced analytics and machine learning initiatives. Compare and read user reviews of the best Data Engineering tools for Databricks Data Intelligence Platform currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is an essential tool for data engineers, allowing them to streamline the process of data ingestion, transformation, and analysis. With its scalable infrastructure and robust suite of data engineering features, users can efficiently build data pipelines and automate workflows. BigQuery integrates easily with other Google Cloud tools, making it a versatile solution for data engineering tasks. New customers can take advantage of $300 in free credits to explore BigQuery’s features, enabling them to build and refine their data workflows for maximum efficiency and effectiveness. This allows engineers to focus more on innovation and less on managing the underlying infrastructure.
    Starting Price: Free ($300 in free credits)
    View Tool
    Visit Website
  • 2
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Tool
    Visit Website
  • 3
    Fivetran

    Fivetran

    Fivetran

    Fivetran is a leading data integration platform that centralizes an organization’s data from various sources to enable modern data infrastructure and drive innovation. It offers over 700 fully managed connectors to move data automatically, reliably, and securely from SaaS applications, databases, ERPs, and files to data warehouses and lakes. The platform supports real-time data syncs and scalable pipelines that fit evolving business needs. Trusted by global enterprises like Dropbox, JetBlue, and Pfizer, Fivetran helps accelerate analytics, AI workflows, and cloud migrations. It features robust security certifications including SOC 1 & 2, GDPR, HIPAA, and ISO 27001. Fivetran provides an easy-to-use, customizable platform that reduces engineering time and enables faster insights.
    View Tool
    Visit Website
  • 4
    dbt

    dbt

    dbt Labs

    Version control, quality assurance, documentation and modularity allow data teams to collaborate like software engineering teams. Analytics errors should be treated with the same level of urgency as bugs in a production product. Much of an analytic workflow is manual. We believe workflows should be built to execute with a single command. Data teams use dbt to codify business logic and make it accessible to the entire organization—for use in reporting, ML modeling, and operational workflows. Built-in CI/CD ensures that changes to data models move appropriately through development, staging, and production environments. dbt Cloud also provides guaranteed uptime and custom SLAs.
    Starting Price: $50 per user per month
  • 5
    Prophecy

    Prophecy

    Prophecy

    Prophecy enables many more users - including visual ETL developers and Data Analysts. All you need to do is point-and-click and write a few SQL expressions to create your pipelines. As you use the Low-Code designer to build your workflows - you are developing high quality, readable code for Spark and Airflow that is committed to your Git. Prophecy gives you a gem builder - for you to quickly develop and rollout your own Frameworks. Examples are Data Quality, Encryption, new Sources and Targets that extend the built-in ones. Prophecy provides best practices and infrastructure as managed services – making your life and operations simple! With Prophecy, your workflows are high performance and use scale-out performance & scalability of the cloud.
    Starting Price: $299 per month
  • 6
    Ascend

    Ascend

    Ascend

    Ascend gives data teams a unified and automated platform to ingest, transform, and orchestrate their entire data engineering and analytics engineering workloads, 10X faster than ever before.​ Ascend helps gridlocked teams break through constraints to build, manage, and optimize the increasing number of data workloads required. Backed by DataAware intelligence, Ascend works continuously in the background to guarantee data integrity and optimize data workloads, reducing time spent on maintenance by up to 90%. Build, iterate on, and run data transformations easily with Ascend’s multi-language flex-code interface enabling the use of SQL, Python, Java, and, Scala interchangeably. Quickly view data lineage, data profiles, job and user logs, system health, and other critical workload metrics at a glance. Ascend delivers native connections to a growing library of common data sources with our Flex-Code data connectors.
    Starting Price: $0.98 per DFC
  • 7
    Decube

    Decube

    Decube

    Decube is a data management platform that helps organizations manage their data observability, data catalog, and data governance needs. It provides end-to-end visibility into data and ensures its accuracy, consistency, and trustworthiness. Decube's platform includes data observability, a data catalog, and data governance components that work together to provide a comprehensive solution. The data observability tools enable real-time monitoring and detection of data incidents, while the data catalog provides a centralized repository for data assets, making it easier to manage and govern data usage and access. The data governance tools provide robust access controls, audit reports, and data lineage tracking to demonstrate compliance with regulatory requirements. Decube's platform is customizable and scalable, making it easy for organizations to tailor it to meet their specific data management needs and manage data across different systems, data sources, and departments.
  • 8
    Querona

    Querona

    YouNeedIT

    We make BI & Big Data analytics work easier and faster. Our goal is to empower business users and make always-busy business and heavily loaded BI specialists less dependent on each other when solving data-driven business problems. If you have ever experienced a lack of data you needed, time to consuming report generation or long queue to your BI expert, consider Querona. Querona uses a built-in Big Data engine to handle growing data volumes. Repeatable queries can be cached or calculated in advance. Optimization needs less effort as Querona automatically suggests query improvements. Querona empowers business analysts and data scientists by putting self-service in their hands. They can easily discover and prototype data models, add new data sources, experiment with query optimization and dig in raw data. Less IT is needed. Now users can get live data no matter where it is stored. If databases are too busy to be queried live, Querona will cache the data.
  • 9
    Numbers Station

    Numbers Station

    Numbers Station

    Accelerating insights, eliminating barriers for data analysts. Intelligent data stack automation, get insights from your data 10x faster with AI. Pioneered at the Stanford AI lab and now available to your enterprise, intelligence for the modern data stack has arrived. Use natural language to get value from your messy, complex, and siloed data in minutes. Tell your data your desired output, and immediately generate code for execution. Customizable automation of complex data tasks that are specific to your organization and not captured by templated solutions. Empower anyone to securely automate data-intensive workflows on the modern data stack, free data engineers from an endless backlog of requests. Arrive at insights in minutes, not months. Uniquely designed for you, tuned for your organization’s needs. Integrated with upstream and downstream tools, Snowflake, Databricks, Redshift, BigQuery, and more coming, built on dbt.
  • 10
    IBM Databand
    Monitor your data health and pipeline performance. Gain unified visibility for pipelines running on cloud-native tools like Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. An observability platform purpose built for Data Engineers. Data engineering is only getting more challenging as demands from business stakeholders grow. Databand can help you catch up. More pipelines, more complexity. Data engineers are working with more complex infrastructure than ever and pushing higher speeds of release. It’s harder to understand why a process has failed, why it’s running late, and how changes affect the quality of data outputs. Data consumers are frustrated with inconsistent results, model performance, and delays in data delivery. Not knowing exactly what data is being delivered, or precisely where failures are coming from, leads to persistent lack of trust. Pipeline logs, errors, and data quality metrics are captured and stored in independent, isolated systems.
  • 11
    Delta Lake

    Delta Lake

    Delta Lake

    Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads. Data lakes typically have multiple data pipelines reading and writing data concurrently, and data engineers have to go through a tedious process to ensure data integrity, due to the lack of transactions. Delta Lake brings ACID transactions to your data lakes. It provides serializability, the strongest level of isolation level. Learn more at Diving into Delta Lake: Unpacking the Transaction Log. In big data, even the metadata itself can be "big data". Delta Lake treats metadata just like data, leveraging Spark's distributed processing power to handle all its metadata. As a result, Delta Lake can handle petabyte-scale tables with billions of partitions and files at ease. Delta Lake provides snapshots of data enabling developers to access and revert to earlier versions of data for audits, rollbacks or to reproduce experiments.
  • 12
    Knoldus

    Knoldus

    Knoldus

    World's largest team of Functional Programming and Fast Data engineers focused on creating customized high-performance solutions. We move from "thought" to "thing" via rapid prototyping and proof of concept. Activate an ecosystem to deliver at scale with CI/CD to support your requirements. Understanding the strategic intent and stakeholder needs to develop a shared vision. Deploy MVP to launch the product in the most efficient & expedient manner possible. Continuous improvements and enhancements to support new requirements. Building great products and providing unmatched engineering services would not be possible without the knowledge and extensive usage of the latest tools and technology. We help you to capitalize on opportunities, respond to competitive threats, and scale successful investments by reducing organizational friction from your company’s structures, processes, and culture. Knoldus helps clients identify and capture the most value and meaningful insights from data.
  • 13
    DataSentics

    DataSentics

    DataSentics

    Making data science & machine learning have a real impact on organizations. We are an AI product studio, a group of 100 experienced data scientists and data engineers with a combination of experience both from the agile world of digital start-ups as well as major international corporations. We don’t end with nice slides and dashboards. The result that counts is an automated data solution in production integrated inside a real process. We do not report clickers but data scientists and data engineers. We have a strong focus on productionalizing data science solutions in the cloud with high standards of CI and automation. Building the greatest concentration of the smartest and most creative data scientists and engineers by being the most exciting and fulfilling place for them to work in Central Europe. Giving them the freedom to use our critical mass of expertise to find and iterate on the most promising data-driven opportunities, both for our clients and our own products.
  • 14
    Feast

    Feast

    Tecton

    Make your offline data available for real-time predictions without having to build custom pipelines. Ensure data consistency between offline training and online inference, eliminating train-serve skew. Standardize data engineering workflows under one consistent framework. Teams use Feast as the foundation of their internal ML platforms. Feast doesn’t require the deployment and management of dedicated infrastructure. Instead, it reuses existing infrastructure and spins up new resources when needed. You are not looking for a managed solution and are willing to manage and maintain your own implementation. You have engineers that are able to support the implementation and management of Feast. You want to run pipelines that transform raw data into features in a separate system and integrate with it. You have unique requirements and want to build on top of an open source solution.
  • 15
    Kestra

    Kestra

    Kestra

    Kestra is an open-source, event-driven orchestrator that simplifies data operations and improves collaboration between engineers and business users. By bringing Infrastructure as Code best practices to data pipelines, Kestra allows you to build reliable workflows and manage them with confidence. Thanks to the declarative YAML interface for defining orchestration logic, everyone who benefits from analytics can participate in the data pipeline creation process. The UI automatically adjusts the YAML definition any time you make changes to a workflow from the UI or via an API call. Therefore, the orchestration logic is defined declaratively in code, even if some workflow components are modified in other ways.
  • Previous
  • You're on page 1
  • Next