Best Data Engineering Tools for Apache Airflow

Compare the Top Data Engineering Tools that integrate with Apache Airflow as of October 2025

This a list of Data Engineering tools that integrate with Apache Airflow. Use the filters on the left to add additional filters for products that have integrations with Apache Airflow. View the products that work with Apache Airflow in the table below.

What are Data Engineering Tools for Apache Airflow?

Data engineering tools are designed to facilitate the process of preparing and managing large datasets for analysis. These tools support tasks like data extraction, transformation, and loading (ETL), allowing engineers to build efficient data pipelines that move and process data from various sources into storage systems. They help ensure data integrity and quality by providing features for validation, cleansing, and monitoring. Data engineering tools also often include capabilities for automation, scalability, and integration with big data platforms. By streamlining complex workflows, they enable organizations to handle large-scale data operations more efficiently and support advanced analytics and machine learning initiatives. Compare and read user reviews of the best Data Engineering tools for Apache Airflow currently available using the table below. This list is updated regularly.

  • 1
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Tool
    Visit Website
  • 2
    Sifflet

    Sifflet

    Sifflet

    Automatically cover thousands of tables with ML-based anomaly detection and 50+ custom metrics. Comprehensive data and metadata monitoring. Exhaustive mapping of all dependencies between assets, from ingestion to BI. Enhanced productivity and collaboration between data engineers and data consumers. Sifflet seamlessly integrates into your data sources and preferred tools and can run on AWS, Google Cloud Platform, and Microsoft Azure. Keep an eye on the health of your data and alert the team when quality criteria aren’t met. Set up in a few clicks the fundamental coverage of all your tables. Configure the frequency of runs, their criticality, and even customized notifications at the same time. Leverage ML-based rules to detect any anomaly in your data. No need for an initial configuration. A unique model for each rule learns from historical data and from user feedback. Complement the automated rules with a library of 50+ templates that can be applied to any asset.
  • 3
    Prophecy

    Prophecy

    Prophecy

    Prophecy enables many more users - including visual ETL developers and Data Analysts. All you need to do is point-and-click and write a few SQL expressions to create your pipelines. As you use the Low-Code designer to build your workflows - you are developing high quality, readable code for Spark and Airflow that is committed to your Git. Prophecy gives you a gem builder - for you to quickly develop and rollout your own Frameworks. Examples are Data Quality, Encryption, new Sources and Targets that extend the built-in ones. Prophecy provides best practices and infrastructure as managed services – making your life and operations simple! With Prophecy, your workflows are high performance and use scale-out performance & scalability of the cloud.
    Starting Price: $299 per month
  • 4
    Ascend

    Ascend

    Ascend

    Ascend gives data teams a unified and automated platform to ingest, transform, and orchestrate their entire data engineering and analytics engineering workloads, 10X faster than ever before.​ Ascend helps gridlocked teams break through constraints to build, manage, and optimize the increasing number of data workloads required. Backed by DataAware intelligence, Ascend works continuously in the background to guarantee data integrity and optimize data workloads, reducing time spent on maintenance by up to 90%. Build, iterate on, and run data transformations easily with Ascend’s multi-language flex-code interface enabling the use of SQL, Python, Java, and, Scala interchangeably. Quickly view data lineage, data profiles, job and user logs, system health, and other critical workload metrics at a glance. Ascend delivers native connections to a growing library of common data sources with our Flex-Code data connectors.
    Starting Price: $0.98 per DFC
  • 5
    DQOps

    DQOps

    DQOps

    DQOps is an open-source data quality platform designed for data quality and data engineering teams that makes data quality visible to business sponsors. The platform provides an efficient user interface to quickly add data sources, configure data quality checks, and manage issues. DQOps comes with over 150 built-in data quality checks, but you can also design custom checks to detect any business-relevant data quality issues. The platform supports incremental data quality monitoring to support analyzing data quality of very big tables. Track data quality KPI scores using our built-in or custom dashboards to show progress in improving data quality to business sponsors. DQOps is DevOps-friendly, allowing you to define data quality definitions in YAML files stored in Git, run data quality checks directly from your data pipelines, or automate any action with a Python Client. DQOps works locally or as a SaaS platform.
    Starting Price: $499 per month
  • 6
    Decube

    Decube

    Decube

    Decube is a data management platform that helps organizations manage their data observability, data catalog, and data governance needs. It provides end-to-end visibility into data and ensures its accuracy, consistency, and trustworthiness. Decube's platform includes data observability, a data catalog, and data governance components that work together to provide a comprehensive solution. The data observability tools enable real-time monitoring and detection of data incidents, while the data catalog provides a centralized repository for data assets, making it easier to manage and govern data usage and access. The data governance tools provide robust access controls, audit reports, and data lineage tracking to demonstrate compliance with regulatory requirements. Decube's platform is customizable and scalable, making it easy for organizations to tailor it to meet their specific data management needs and manage data across different systems, data sources, and departments.
  • 7
    Ardent

    Ardent

    Ardent

    Ardent (at tryardent.com) is an AI data engineer platform that builds, maintains, and scales data pipelines with minimal human effort. It lets users issue natural language commands, and the system handles implementation, schema inference, lineage tracking, and error resolution autonomously. Ardent’s ingestors come preconfigured for many common data sources and work “out of the box,” enabling connection to warehouses, orchestration systems, and databases in under 30 minutes. It supports debugging on autopilot by referencing web and documentation knowledge, and is trained on thousands of real engineering tasks to solve complex pipeline issues with zero intervention. It is engineered to handle production contexts, managing numerous tables and pipelines at scale, running parallel jobs, triggering self-healing workflows, monitoring and enforcing data quality, and orchestrating operations through APIs or UI.
    Starting Price: Free
  • 8
    Datakin

    Datakin

    Datakin

    Instantly reveal the order hidden within your complex data world, and always know exactly where to look for answers. Datakin automatically traces data lineage, showing your entire data ecosystem in a rich visual graph. It clearly illustrates the upstream and downstream relationships for each dataset. The Duration tab summarizes a job’s performance in a Gantt-style chart along with its upstream dependencies, making it easy to find bottlenecks. When you need to pinpoint the exact moment of a breaking change, the Compare tab shows how your jobs and datasets have changed between runs. Sometimes jobs that run successfully produce bad output. The Quality tab surfaces critical data quality metrics, showing how they change over time so anomalies become obvious. Datakin helps you find the root cause of issues quickly – and prevent new ones from occurring.
    Starting Price: $2 per month
  • 9
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 10
    IBM Databand
    Monitor your data health and pipeline performance. Gain unified visibility for pipelines running on cloud-native tools like Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. An observability platform purpose built for Data Engineers. Data engineering is only getting more challenging as demands from business stakeholders grow. Databand can help you catch up. More pipelines, more complexity. Data engineers are working with more complex infrastructure than ever and pushing higher speeds of release. It’s harder to understand why a process has failed, why it’s running late, and how changes affect the quality of data outputs. Data consumers are frustrated with inconsistent results, model performance, and delays in data delivery. Not knowing exactly what data is being delivered, or precisely where failures are coming from, leads to persistent lack of trust. Pipeline logs, errors, and data quality metrics are captured and stored in independent, isolated systems.
  • Previous
  • You're on page 1
  • Next