Compare the Top Data Engineering Tools that integrate with Amazon S3 as of October 2025

This a list of Data Engineering tools that integrate with Amazon S3. Use the filters on the left to add additional filters for products that have integrations with Amazon S3. View the products that work with Amazon S3 in the table below.

What are Data Engineering Tools for Amazon S3?

Data engineering tools are designed to facilitate the process of preparing and managing large datasets for analysis. These tools support tasks like data extraction, transformation, and loading (ETL), allowing engineers to build efficient data pipelines that move and process data from various sources into storage systems. They help ensure data integrity and quality by providing features for validation, cleansing, and monitoring. Data engineering tools also often include capabilities for automation, scalability, and integration with big data platforms. By streamlining complex workflows, they enable organizations to handle large-scale data operations more efficiently and support advanced analytics and machine learning initiatives. Compare and read user reviews of the best Data Engineering tools for Amazon S3 currently available using the table below. This list is updated regularly.

  • 1
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Tool
    Visit Website
  • 2
    Sifflet

    Sifflet

    Sifflet

    Automatically cover thousands of tables with ML-based anomaly detection and 50+ custom metrics. Comprehensive data and metadata monitoring. Exhaustive mapping of all dependencies between assets, from ingestion to BI. Enhanced productivity and collaboration between data engineers and data consumers. Sifflet seamlessly integrates into your data sources and preferred tools and can run on AWS, Google Cloud Platform, and Microsoft Azure. Keep an eye on the health of your data and alert the team when quality criteria aren’t met. Set up in a few clicks the fundamental coverage of all your tables. Configure the frequency of runs, their criticality, and even customized notifications at the same time. Leverage ML-based rules to detect any anomaly in your data. No need for an initial configuration. A unique model for each rule learns from historical data and from user feedback. Complement the automated rules with a library of 50+ templates that can be applied to any asset.
  • 3
    RudderStack

    RudderStack

    RudderStack

    RudderStack is the smart customer data pipeline. Easily build pipelines connecting your whole customer data stack, then make them smarter by pulling analysis from your data warehouse to trigger enrichment and activation in customer tools for identity stitching and other advanced use cases. Start building smarter customer data pipelines today.
    Starting Price: $750/month
  • 4
    Microsoft Fabric
    Reshape how everyone accesses, manages, and acts on data and insights by connecting every data source and analytics service together—on a single, AI-powered platform. All your data. All your teams. All in one place. Establish an open and lake-centric hub that helps data engineers connect and curate data from different sources—eliminating sprawl and creating custom views for everyone. Accelerate analysis by developing AI models on a single foundation without data movement—reducing the time data scientists need to deliver value. Innovate faster by helping every person in your organization act on insights from within Microsoft 365 apps, such as Microsoft Excel and Microsoft Teams. Responsibly connect people and data using an open and scalable solution that gives data stewards additional control with built-in security, governance, and compliance.
    Starting Price: $156.334/month/2CU
  • 5
    Datameer

    Datameer

    Datameer

    Datameer revolutionizes data transformation with a low-code approach, trusted by top global enterprises. Craft, transform, and publish data seamlessly with no code and SQL, simplifying complex data engineering tasks. Empower your data teams to make informed decisions confidently while saving costs and ensuring responsible self-service analytics. Speed up your analytics workflow by transforming datasets to answer ad-hoc questions and support operational dashboards. Empower everyone on your team with our SQL or Drag-and-Drop to transform your data in an intuitive and collaborative workspace. And best of all, everything happens in Snowflake. Datameer is designed and optimized for Snowflake to reduce data movement and increase platform adoption. Some of the problems Datameer solves: - Analytics is not accessible - Drowning in backlog - Long development
  • 6
    Qrvey

    Qrvey

    Qrvey

    Qrvey pioneered multi-tenant self-service analytics for SaaS companies and now leads the evolution toward AI-driven, autonomous analytics. With over 20 years of experience, we provide industry-leading guidance and support, ensuring our clients achieve their analytics goals. Qrvey is the partner of choice for SaaS leaders bringing AI-driven insight to their customers. About Qrvey Platform Qrvey is the embedded analytics platform designed specifically for SaaS companies. Qrvey offers insight, agility and growth. Insight for your customers · True self-service with unlimited customization · AI-driven insights · No-code workflow automation Agility for your product team · End-to-end embedded analytics platform · Native multi-tenant security · Flexible multi-cloud deployments Growth for your business · Flat-rate pricing for scale · Unmatched monetization opportunities · Embedded services
  • 7
    Dataplane

    Dataplane

    Dataplane

    The concept behind Dataplane is to make it quicker and easier to construct a data mesh with robust data pipelines and automated workflows for businesses and teams of all sizes. In addition to being more user friendly, there has been an emphasis on scaling, resilience, performance and security.
    Starting Price: Free
  • 8
    Ascend

    Ascend

    Ascend

    Ascend gives data teams a unified and automated platform to ingest, transform, and orchestrate their entire data engineering and analytics engineering workloads, 10X faster than ever before.​ Ascend helps gridlocked teams break through constraints to build, manage, and optimize the increasing number of data workloads required. Backed by DataAware intelligence, Ascend works continuously in the background to guarantee data integrity and optimize data workloads, reducing time spent on maintenance by up to 90%. Build, iterate on, and run data transformations easily with Ascend’s multi-language flex-code interface enabling the use of SQL, Python, Java, and, Scala interchangeably. Quickly view data lineage, data profiles, job and user logs, system health, and other critical workload metrics at a glance. Ascend delivers native connections to a growing library of common data sources with our Flex-Code data connectors.
    Starting Price: $0.98 per DFC
  • 9
    Mozart Data

    Mozart Data

    Mozart Data

    Mozart Data is the all-in-one modern data platform that makes it easy to consolidate, organize, and analyze data. Start making data-driven decisions by setting up a modern data stack in an hour - no engineering required.
  • 10
    Chalk

    Chalk

    Chalk

    Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
    Starting Price: Free
  • 11
    IBM Databand
    Monitor your data health and pipeline performance. Gain unified visibility for pipelines running on cloud-native tools like Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. An observability platform purpose built for Data Engineers. Data engineering is only getting more challenging as demands from business stakeholders grow. Databand can help you catch up. More pipelines, more complexity. Data engineers are working with more complex infrastructure than ever and pushing higher speeds of release. It’s harder to understand why a process has failed, why it’s running late, and how changes affect the quality of data outputs. Data consumers are frustrated with inconsistent results, model performance, and delays in data delivery. Not knowing exactly what data is being delivered, or precisely where failures are coming from, leads to persistent lack of trust. Pipeline logs, errors, and data quality metrics are captured and stored in independent, isolated systems.
  • 12
    Molecula

    Molecula

    Molecula

    Molecula is an enterprise feature store that simplifies, accelerates, and controls big data access to power machine-scale analytics and AI. Continuously extracting features, reducing the dimensionality of data at the source, and routing real-time feature changes into a central store enables millisecond queries, computation, and feature re-use across formats and locations without copying or moving raw data. The Molecula feature store provides data engineers, data scientists, and application developers a single access point to graduate from reporting and explaining with human-scale data to predicting and prescribing real-time business outcomes with all data. Enterprises spend a lot of money preparing, aggregating, and making numerous copies of their data for every project before they can make decisions with it. Molecula brings an entirely new paradigm for continuous, real-time data analysis to be used for all your mission-critical applications.
  • 13
    Feast

    Feast

    Tecton

    Make your offline data available for real-time predictions without having to build custom pipelines. Ensure data consistency between offline training and online inference, eliminating train-serve skew. Standardize data engineering workflows under one consistent framework. Teams use Feast as the foundation of their internal ML platforms. Feast doesn’t require the deployment and management of dedicated infrastructure. Instead, it reuses existing infrastructure and spins up new resources when needed. You are not looking for a managed solution and are willing to manage and maintain your own implementation. You have engineers that are able to support the implementation and management of Feast. You want to run pipelines that transform raw data into features in a separate system and integrate with it. You have unique requirements and want to build on top of an open source solution.
  • Previous
  • You're on page 1
  • Next