Compare the Top Computer Vision Software that integrates with Python as of June 2025

This a list of Computer Vision software that integrates with Python. Use the filters on the left to add additional filters for products that have integrations with Python. View the products that work with Python in the table below.

What is Computer Vision Software for Python?

Computer vision software allows machines to interpret and analyze visual data from images or videos, enabling applications like object detection, image recognition, and video analysis. It utilizes advanced algorithms and deep learning techniques to understand and classify visual information, often mimicking human vision processes. These tools are essential in fields like autonomous vehicles, facial recognition, medical imaging, and augmented reality, where accurate interpretation of visual input is crucial. Computer vision software often includes features for image preprocessing, feature extraction, and model training to improve the accuracy of visual analysis. Overall, it enables machines to "see" and make informed decisions based on visual data, revolutionizing industries with automation and intelligence. Compare and read user reviews of the best Computer Vision software for Python currently available using the table below. This list is updated regularly.

  • 1
    Nyckel

    Nyckel

    Nyckel

    Nyckel makes it easy to auto-label images and text using AI. We say ‘easy’ because trying to do classification through complex “we-do-it-all” AI/ML tools is hard. Especially if you’re not a machine learning expert. That’s why Nyckel built a platform that makes image and text classification easy for everyone. In just a few minutes, you can train an AI model to identify attributes of any image or text. Whether you’re sorting through images, moderating text, or needing real-time content labeling, Nyckel lets you build a custom classifier in just 5 minutes. And with our Classification API, you can auto-label at scale. Nyckel’s goal is to make AI-powered classification a practical tool for anyone. Learn more at Nyckel.com.
    Starting Price: Free
  • 2
    OpenCV

    OpenCV

    OpenCV

    OpenCV (Open Source Computer Vision Library) is an open-source computer vision and machine learning software library. OpenCV was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in commercial products. Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and modify the code. The library has more than 2500 optimized algorithms, which includes a comprehensive set of both classic and state-of-the-art computer vision and machine learning algorithms. These algorithms can be used to detect and recognize faces, identify objects, classify human actions in videos, track camera movements, track moving objects, extract 3D models of objects, produce 3D point clouds from stereo cameras, and stitch images together to produce a high-resolution image of an entire scene, find similar images from an image database, remove red eyes from images taken using flash, follow eye movements, recognize scenery, etc.
    Starting Price: Free
  • 3
    Prophesee Metavision
    Metavision is an advanced event-based vision software toolkit developed by Prophesee, designed to facilitate the evaluation, design, and commercialization of event-based vision products. The SDK offers a comprehensive suite of tools, including 64 algorithms, 105 code samples, and 17 tutorials, enabling developers to efficiently build and deploy event-based applications. The open source architecture of Metavision SDK ensures full interoperability between software and hardware devices, fostering a rapidly growing event-based vision community. The platform covers a wide range of computer vision fields, such as machine learning, computer vision, camera calibration, and high-performance applications. Developers have access to extensive documentation, including over 300 pages of content, programming guides, and reference data, providing a solid foundation for product development. Metavision SDK5 PRO includes advanced add-ons like high-speed counting, spatter monitoring, and more.
    Starting Price: Free
  • 4
    Google Cloud Vision AI
    Derive insights from your images in the cloud or at the edge with AutoML Vision or use pre-trained Vision API models to detect emotion, understand text, and more. Google Cloud offers two computer vision products that use machine learning to help you understand your images with industry-leading prediction accuracy. Automate the training of your own custom machine learning models. Simply upload images and train custom image models with AutoML Vision’s easy-to-use graphical interface; optimize your models for accuracy, latency, and size; and export them to your application in the cloud, or to an array of devices at the edge. Google Cloud’s Vision API offers powerful pre-trained machine learning models through REST and RPC APIs. Assign labels to images and quickly classify them into millions of predefined categories. Detect objects and faces, read printed and handwritten text, and build valuable metadata into your image catalog.
  • 5
    Segments.ai

    Segments.ai

    Segments.ai

    Segments.ai is an advanced data labeling platform that allows users to label data from multiple sensors simultaneously, improving the speed and accuracy of labeling for robotics and autonomous vehicle (AV) applications. It supports 2D and 3D labeling, including point cloud annotation, and enables users to label moving and stationary objects with ease. The platform leverages smart automation tools like batch mode and ML-powered object tracking, streamlining workflows and reducing manual labor. By fusing 2D image data with 3D point cloud data, Segments.ai offers a more efficient and consistent labeling process, ideal for high-volume, multi-sensor projects.
  • Previous
  • You're on page 1
  • Next