word2vec

word2vec

Google
+
+

Related Products

  • MongoDB Atlas
    1,632 Ratings
    Visit Website
  • Azore CFD
    14 Ratings
    Visit Website
  • LM-Kit.NET
    16 Ratings
    Visit Website
  • NINJIO
    390 Ratings
    Visit Website
  • AddSearch
    121 Ratings
    Visit Website
  • Digital WarRoom
    55 Ratings
    Visit Website
  • Windsurf Editor
    137 Ratings
    Visit Website
  • Criminal IP
    12 Ratings
    Visit Website
  • CCM Platform
    3 Ratings
    Visit Website
  • RaimaDB
    5 Ratings
    Visit Website

About

VectorDB is a lightweight Python package for storing and retrieving text using chunking, embedding, and vector search techniques. It provides an easy-to-use interface for saving, searching, and managing textual data with associated metadata and is designed for use cases where low latency is essential. Vector search and embeddings are essential when working with large language models because they enable efficient and accurate retrieval of relevant information from massive datasets. By converting text into high-dimensional vectors, these techniques allow for quick comparisons and searches, even when dealing with millions of documents. This makes it possible to find the most relevant results in a fraction of the time it would take using traditional text-based search methods. Additionally, embeddings capture the semantic meaning of the text, which helps improve the quality of the search results and enables more advanced natural language processing tasks.

About

Word2Vec is a neural network-based technique for learning word embeddings, developed by researchers at Google. It transforms words into continuous vector representations in a multi-dimensional space, capturing semantic relationships based on context. Word2Vec uses two main architectures: Skip-gram, which predicts surrounding words given a target word, and Continuous Bag-of-Words (CBOW), which predicts a target word based on surrounding words. By training on large text corpora, Word2Vec generates word embeddings where similar words are positioned closely, enabling tasks like semantic similarity, analogy solving, and text clustering. The model was influential in advancing NLP by introducing efficient training techniques such as hierarchical softmax and negative sampling. Though newer embedding models like BERT and Transformer-based methods have surpassed it in complexity and performance, Word2Vec remains a foundational method in natural language processing and machine learning research.

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Audience

Anyone in need of a tool to save, search, store, manage, and retrieve text

Audience

Researchers, data scientists, and developers working in natural language processing (NLP) and machine learning who need efficient word embeddings for text analysis and semantic understanding

Support

Phone Support
24/7 Live Support
Online

Support

Phone Support
24/7 Live Support
Online

API

Offers API

API

Offers API

Screenshots and Videos

Screenshots and Videos

No images available

Pricing

Free
Free Version
Free Trial

Pricing

Free
Free Version
Free Trial

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Training

Documentation
Webinars
Live Online
In Person

Training

Documentation
Webinars
Live Online
In Person

Company Information

VectorDB
United States
vectordb.com

Company Information

Google
Founded: 1998
United States
code.google.com/archive/p/word2vec/

Alternatives

Alternatives

Gensim

Gensim

Radim Řehůřek
GloVe

GloVe

Stanford NLP
LexVec

LexVec

Alexandre Salle

Categories

Categories

Integrations

Gensim
Lamatic.ai
Python

Integrations

Gensim
Lamatic.ai
Python
Claim VectorDB and update features and information
Claim VectorDB and update features and information
Claim word2vec and update features and information
Claim word2vec and update features and information