Related Products
|
||||||
About
Tensormesh is a caching layer built specifically for large-language-model inference workloads that enables organizations to reuse intermediate computations, drastically reduce GPU usage, and accelerate time-to-first-token and latency. It works by capturing and reusing key-value cache states that are normally thrown away after each inference, thereby cutting redundant compute and delivering “up to 10x faster inference” while substantially lowering GPU load. It supports deployments in public cloud or on-premises, with full observability and enterprise-grade control, SDKs/APIs, and dashboards for integration into existing inference pipelines, and compatibility with inference engines such as vLLM out of the box. Tensormesh emphasizes performance at scale, including sub-millisecond repeated queries, while optimizing every layer of inference from caching through computation.
|
About
VLLM is a high-performance library designed to facilitate efficient inference and serving of Large Language Models (LLMs). Originally developed in the Sky Computing Lab at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry. It offers state-of-the-art serving throughput by efficiently managing attention key and value memory through its PagedAttention mechanism. It supports continuous batching of incoming requests and utilizes optimized CUDA kernels, including integration with FlashAttention and FlashInfer, to enhance model execution speed. Additionally, vLLM provides quantization support for GPTQ, AWQ, INT4, INT8, and FP8, as well as speculative decoding capabilities. Users benefit from seamless integration with popular Hugging Face models, support for various decoding algorithms such as parallel sampling and beam search, and compatibility with NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, and more.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Enterprises and AI infrastructure teams wanting a tool to reduce latency and cost while maintaining full control over deployment and data
|
Audience
AI infrastructure engineers looking for a solution to optimize the deployment and serving of large-scale language models in production environments
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationTensormesh
Founded: 2025
United States
www.tensormesh.ai/
|
Company InformationVLLM
United States
docs.vllm.ai/en/latest/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
Database Mart
Docker
Hugging Face
KServe
Kubernetes
NGINX
NVIDIA DRIVE
OpenAI
PyTorch
|
Integrations
Database Mart
Docker
Hugging Face
KServe
Kubernetes
NGINX
NVIDIA DRIVE
OpenAI
PyTorch
|
|||||
|
|
|