Prodigy

Prodigy

Explosion
+
+

Related Products

  • Vertex AI
    713 Ratings
    Visit Website
  • Ango Hub
    15 Ratings
    Visit Website
  • Google AI Studio
    4 Ratings
    Visit Website
  • Fraud.net
    56 Ratings
    Visit Website
  • RunPod
    141 Ratings
    Visit Website
  • OORT DataHub
    13 Ratings
    Visit Website
  • BytePlus Recommend
    1 Rating
    Visit Website
  • LM-Kit.NET
    17 Ratings
    Visit Website
  • kama DEI
    8 Ratings
    Visit Website
  • Google Cloud Speech-to-Text
    374 Ratings
    Visit Website

About

Radically efficient machine teaching. An annotation tool powered by active learning. Prodigy is a scriptable annotation tool so efficient that data scientists can do the annotation themselves, enabling a new level of rapid iteration. Today’s transfer learning technologies mean you can train production-quality models with very few examples. With Prodigy you can take full advantage of modern machine learning by adopting a more agile approach to data collection. You'll move faster, be more independent and ship far more successful projects. Prodigy brings together state-of-the-art insights from machine learning and user experience. With its continuous active learning system, you're only asked to annotate examples the model does not already know the answer to. The web application is powerful, extensible and follows modern UX principles. The secret is very simple: it's designed to help you focus on one decision at a time and keep you clicking – like Tinder for data.

About

Scikit-learn provides simple and efficient tools for predictive data analysis. Scikit-learn is a robust, open source machine learning library for the Python programming language, designed to provide simple and efficient tools for data analysis and modeling. Built on the foundations of popular scientific libraries like NumPy, SciPy, and Matplotlib, scikit-learn offers a wide range of supervised and unsupervised learning algorithms, making it an essential toolkit for data scientists, machine learning engineers, and researchers. The library is organized into a consistent and flexible framework, where various components can be combined and customized to suit specific needs. This modularity makes it easy for users to build complex pipelines, automate repetitive tasks, and integrate scikit-learn into larger machine-learning workflows. Additionally, the library’s emphasis on interoperability ensures that it works seamlessly with other Python libraries, facilitating smooth data processing.

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Audience

Data scientists, AI developers, data labelers

Audience

Engineers and data scientists requiring a solution to manage and improve their machine learning research

Support

Phone Support
24/7 Live Support
Online

Support

Phone Support
24/7 Live Support
Online

API

Offers API

API

Offers API

Screenshots and Videos

Screenshots and Videos

Pricing

$490 one-time fee
Free Version
Free Trial

Pricing

Free
Free Version
Free Trial

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Training

Documentation
Webinars
Live Online
In Person

Training

Documentation
Webinars
Live Online
In Person

Company Information

Explosion
Founded: 2016
Germany
prodi.gy/

Company Information

scikit-learn
United States
scikit-learn.org/stable/

Alternatives

Alternatives

Gensim

Gensim

Radim Řehůřek
ML.NET

ML.NET

Microsoft
MLlib

MLlib

Apache Software Foundation
Keepsake

Keepsake

Replicate

Categories

Categories

Data Labeling Features

Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management

Integrations

DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
Keepsake
MLJAR Studio
Matplotlib
ModelOp
NumPy
Python
Train in Data
ZenML

Integrations

DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
Keepsake
MLJAR Studio
Matplotlib
ModelOp
NumPy
Python
Train in Data
ZenML
Claim Prodigy and update features and information
Claim Prodigy and update features and information
Claim scikit-learn and update features and information
Claim scikit-learn and update features and information