NVIDIA ModulusNVIDIA
|
NVIDIA PhysicsNeMoNVIDIA
|
|||||
Related Products
|
||||||
About
NVIDIA Modulus is a neural network framework that blends the power of physics in the form of governing partial differential equations (PDEs) with data to build high-fidelity, parameterized surrogate models with near-real-time latency. Whether you’re looking to get started with AI-driven physics problems or designing digital twin models for complex non-linear, multi-physics systems, NVIDIA Modulus can support your work. Offers building blocks for developing physics machine learning surrogate models that combine both physics and data. The framework is generalizable to different domains and use cases—from engineering simulations to life sciences and from forward simulations to inverse/data assimilation problems. Provides parameterized system representation that solves for multiple scenarios in near real time, letting you train once offline to infer in real time repeatedly.
|
About
NVIDIA PhysicsNeMo is an open source Python deep-learning framework for building, training, fine-tuning, and inferring physics-AI models that combine physics knowledge with data to accelerate simulations, create high-fidelity surrogate models, and enable near-real-time predictions across domains such as computational fluid dynamics, structural mechanics, electromagnetics, weather and climate, and digital twin applications. It provides scalable, GPU-accelerated tools and Python APIs built on PyTorch and released under the Apache 2.0 license, offering curated model architectures including physics-informed neural networks, neural operators, graph neural networks, and generative AI–based approaches so developers can harness physics-driven causality alongside observed data for engineering-grade modeling. PhysicsNeMo includes end-to-end training pipelines from geometry ingestion to differential equations, reference application recipes to jump-start workflows.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Organizations looking for a powerful Physics Machine Learning platform
|
Audience
Researchers, engineers, and developers who need an open source Python AI framework to build, train, fine-tune, and deploy physics-informed machine learning models for simulation, digital twins, and real-time prediction
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationNVIDIA
Founded: 1993
United States
developer.nvidia.com/modulus
|
Company InformationNVIDIA
Founded: 1993
United States
developer.nvidia.com/physicsnemo
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
PyTorch
Python
|
||||||
|
|
|