Microsoft Cognitive ToolkitMicrosoft
|
NVIDIA PhysicsNeMoNVIDIA
|
|||||
Related Products
|
||||||
About
The Microsoft Cognitive Toolkit (CNTK) is an open-source toolkit for commercial-grade distributed deep learning. It describes neural networks as a series of computational steps via a directed graph. CNTK allows the user to easily realize and combine popular model types such as feed-forward DNNs, convolutional neural networks (CNNs) and recurrent neural networks (RNNs/LSTMs). CNTK implements stochastic gradient descent (SGD, error backpropagation) learning with automatic differentiation and parallelization across multiple GPUs and servers. CNTK can be included as a library in your Python, C#, or C++ programs, or used as a standalone machine-learning tool through its own model description language (BrainScript). In addition you can use the CNTK model evaluation functionality from your Java programs. CNTK supports 64-bit Linux or 64-bit Windows operating systems. To install you can either choose pre-compiled binary packages, or compile the toolkit from the source provided in GitHub.
|
About
NVIDIA PhysicsNeMo is an open source Python deep-learning framework for building, training, fine-tuning, and inferring physics-AI models that combine physics knowledge with data to accelerate simulations, create high-fidelity surrogate models, and enable near-real-time predictions across domains such as computational fluid dynamics, structural mechanics, electromagnetics, weather and climate, and digital twin applications. It provides scalable, GPU-accelerated tools and Python APIs built on PyTorch and released under the Apache 2.0 license, offering curated model architectures including physics-informed neural networks, neural operators, graph neural networks, and generative AI–based approaches so developers can harness physics-driven causality alongside observed data for engineering-grade modeling. PhysicsNeMo includes end-to-end training pipelines from geometry ingestion to differential equations, reference application recipes to jump-start workflows.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Developers and enterprises seeking a toolkit solution designed for commercial-grade distributed deep learning
|
Audience
Researchers, engineers, and developers who need an open source Python AI framework to build, train, fine-tune, and deploy physics-informed machine learning models for simulation, digital twins, and real-time prediction
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationMicrosoft
Founded: 1975
United States
docs.microsoft.com/en-us/cognitive-toolkit/
|
Company InformationNVIDIA
Founded: 1993
United States
developer.nvidia.com/physicsnemo
|
|||||
Alternatives |
Alternatives |
|||||
|
|
||||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
Categories |
Categories |
|||||
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
|
||||||
Integrations
AI Skills Navigator
Alteryx
AssurX
AuraQuantic
Azure Data Science Virtual Machines
Azure Database for MariaDB
Microsoft Dynamics 365 Finance
Microsoft Dynamics Supply Chain Management
Microsoft Power Platform
PyTorch
|
Integrations
AI Skills Navigator
Alteryx
AssurX
AuraQuantic
Azure Data Science Virtual Machines
Azure Database for MariaDB
Microsoft Dynamics 365 Finance
Microsoft Dynamics Supply Chain Management
Microsoft Power Platform
PyTorch
|
|||||
|
|
|