Haystackdeepset
|
Universal Sentence EncoderTensorflow
|
|||||
Related Products
|
||||||
About
Apply the latest NLP technology to your own data with the use of Haystack's pipeline architecture. Implement production-ready semantic search, question answering, summarization and document ranking for a wide range of NLP applications. Evaluate components and fine-tune models. Ask questions in natural language and find granular answers in your documents using the latest QA models with the help of Haystack pipelines. Perform semantic search and retrieve ranked documents according to meaning, not just keywords! Make use of and compare the latest pre-trained transformer-based languages models like OpenAI’s GPT-3, BERT, RoBERTa, DPR, and more. Build semantic search and question-answering applications that can scale to millions of documents. Building blocks for the entire product development cycle such as file converters, indexing functions, models, labeling tools, domain adaptation modules, and REST API.
|
About
The Universal Sentence Encoder (USE) encodes text into high-dimensional vectors that can be utilized for tasks such as text classification, semantic similarity, and clustering. It offers two model variants: one based on the Transformer architecture and another on Deep Averaging Network (DAN), allowing a balance between accuracy and computational efficiency. The Transformer-based model captures context-sensitive embeddings by processing the entire input sequence simultaneously, while the DAN-based model computes embeddings by averaging word embeddings, followed by a feedforward neural network. These embeddings facilitate efficient semantic similarity calculations and enhance performance on downstream tasks with minimal supervised training data. The USE is accessible via TensorFlow Hub, enabling seamless integration into various applications.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Businesses and developers wanting a solution to evaluate components and fine-tune models to improve their applications
|
Audience
Data scientists and machine learning engineers seeking a tool to optimize their natural language processing models with robust sentence embeddings
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company Informationdeepset
Founded: 2018
Germany
haystack.deepset.ai/
|
Company InformationTensorflow
Founded: 2015
United States
www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
|
|||||
Alternatives |
Alternatives |
|||||
|
|
||||||
|
|
||||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
BERT
DPR
Elasticsearch
Faiss
GPT-3
Google Colab
Hugging Face
Milvus
OpenAI
OpenSearch
|
Integrations
BERT
DPR
Elasticsearch
Faiss
GPT-3
Google Colab
Hugging Face
Milvus
OpenAI
OpenSearch
|
|||||
|
|
|