E5 Text EmbeddingsMicrosoft
|
voyage-4-largeVoyage AI
|
|||||
Related Products
|
||||||
About
E5 Text Embeddings, developed by Microsoft, are advanced models designed to convert textual data into meaningful vector representations, enhancing tasks like semantic search and information retrieval. These models are trained using weakly-supervised contrastive learning on a vast dataset of over one billion text pairs, enabling them to capture intricate semantic relationships across multiple languages. The E5 family includes models of varying sizes—small, base, and large—offering a balance between computational efficiency and embedding quality. Additionally, multilingual versions of these models have been fine-tuned to support diverse languages, ensuring broad applicability in global contexts. Comprehensive evaluations demonstrate that E5 models achieve performance on par with state-of-the-art, English-only models of similar sizes.
|
About
The Voyage 4 model family from Voyage AI is a new generation of text embedding models designed to produce high-quality semantic vectors with an industry-first shared embedding space that lets different models in the series generate compatible embeddings so developers can mix and match models for document and query embedding to optimize accuracy, latency, and cost trade-offs. It includes voyage-4-large (a flagship model using a mixture-of-experts architecture delivering state-of-the-art retrieval accuracy at about 40% lower serving cost than comparable dense models), voyage-4 (balancing quality and efficiency), voyage-4-lite (high-quality embeddings with fewer parameters and lower compute cost), and the open-weight voyage-4-nano (ideal for local development and prototyping with an Apache 2.0 license). All four models in the series operate in a single shared embedding space, so embeddings generated by different variants are interchangeable, enabling asymmetric retrieval strategies.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
E5 Text Embeddings are designed for AI researchers, machine learning engineers, and developers seeking high-quality text representations for applications like semantic search, information retrieval, and multilingual NLP tasks
|
Audience
AI developers and engineers building retrieval-based AI systems, semantic search, and context-aware agents who need high-accuracy, flexible, and cost-optimized text embedding models
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and VideosNo images available
|
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationMicrosoft
Founded: 1975
United States
github.com/microsoft/unilm/tree/master/e5
|
Company InformationVoyage AI
Founded: 2023
United States
blog.voyageai.com/2026/01/15/voyage-4/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
Cohere Embed
Gemini
Hugging Face
MongoDB Atlas
OpenAI
Voyage AI
|
Integrations
Cohere Embed
Gemini
Hugging Face
MongoDB Atlas
OpenAI
Voyage AI
|
|||||
|
|
|