DeepScaleRAgentica Project
|
MathstralMistral AI
|
|||||
Related Products
|
||||||
About
DeepScaleR is a 1.5-billion-parameter language model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B using distributed reinforcement learning and a novel iterative context-lengthening strategy that gradually increases its context window from 8K to 24K tokens during training. It was trained on ~40,000 carefully curated mathematical problems drawn from competition-level datasets like AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. DeepScaleR achieves 43.1% accuracy on AIME 2024, a roughly 14.3 percentage point boost over the base model, and surpasses the performance of the proprietary O1-Preview model despite its much smaller size. It also posts strong results on a suite of math benchmarks (e.g., MATH-500, AMC 2023, Minerva Math, OlympiadBench), demonstrating that small, efficient models tuned with RL can match or exceed larger baselines on reasoning tasks.
|
About
As a tribute to Archimedes, whose 2311th anniversary we’re celebrating this year, we are proud to release our first Mathstral model, a specific 7B model designed for math reasoning and scientific discovery. The model has a 32k context window published under the Apache 2.0 license. We’re contributing Mathstral to the science community to bolster efforts in advanced mathematical problems requiring complex, multi-step logical reasoning. The Mathstral release is part of our broader effort to support academic projects, it was produced in the context of our collaboration with Project Numina. Akin to Isaac Newton in his time, Mathstral stands on the shoulders of Mistral 7B and specializes in STEM subjects. It achieves state-of-the-art reasoning capacities in its size category across various industry-standard benchmarks. In particular, it achieves 56.6% on MATH and 63.47% on MMLU, with the following MMLU performance difference by subject between Mathstral 7B and Mistral 7B.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Researchers, students, and developers interested in an AI model capable of mathematical reasoning and logic tasks without requiring heavy hardware
|
Audience
Individuals focused on mathematical research looking for an AI tool to enhance their problem-solving capabilities
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAgentica Project
Founded: 2025
United States
agentica-project.com
|
Company InformationMistral AI
Founded: 2023
France
mistral.ai/news/mathstral/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
1min.AI
AI-FLOW
AnythingLLM
BlueGPT
Codestral
GMTech
GaiaNet
Groq
Humiris AI
Memo AI
|
Integrations
1min.AI
AI-FLOW
AnythingLLM
BlueGPT
Codestral
GMTech
GaiaNet
Groq
Humiris AI
Memo AI
|
|||||
|
|
|