DeepScaleRAgentica Project
|
GLM-4.1VZhipu AI
|
|||||
Related Products
|
||||||
About
DeepScaleR is a 1.5-billion-parameter language model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B using distributed reinforcement learning and a novel iterative context-lengthening strategy that gradually increases its context window from 8K to 24K tokens during training. It was trained on ~40,000 carefully curated mathematical problems drawn from competition-level datasets like AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. DeepScaleR achieves 43.1% accuracy on AIME 2024, a roughly 14.3 percentage point boost over the base model, and surpasses the performance of the proprietary O1-Preview model despite its much smaller size. It also posts strong results on a suite of math benchmarks (e.g., MATH-500, AMC 2023, Minerva Math, OlympiadBench), demonstrating that small, efficient models tuned with RL can match or exceed larger baselines on reasoning tasks.
|
About
GLM-4.1V is a vision-language model, providing a powerful, compact multimodal model designed for reasoning and perception across images, text, and documents. The 9-billion-parameter variant (GLM-4.1V-9B-Thinking) is built on the GLM-4-9B foundation and enhanced through a specialized training paradigm using Reinforcement Learning with Curriculum Sampling (RLCS). It supports a 64k-token context window and accepts high-resolution inputs (up to 4K images, any aspect ratio), enabling it to handle complex tasks such as optical character recognition, image captioning, chart and document parsing, video and scene understanding, GUI-agent workflows (e.g., interpreting screenshots, recognizing UI elements), and general vision-language reasoning. In benchmark evaluations at the 10 B-parameter scale, GLM-4.1V-9B-Thinking achieved top performance on 23 of 28 tasks.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Researchers, students, and developers interested in an AI model capable of mathematical reasoning and logic tasks without requiring heavy hardware
|
Audience
Developers and AI researchers seeking a solution offering a vision-language model that balances size and capability, ideal for building multimodal agents, document/image analysis tools, or GUI-based automation workflows
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAgentica Project
Founded: 2025
United States
agentica-project.com
|
Company InformationZhipu AI
Founded: 2023
China
chat.z.ai/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
Claude Code
Cline
Kilo Code
OpenRouter
Roo Code
Sup AI
|
||||||
|
|
|