Related Products
|
||||||
About
Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
|
About
Traceloop is a comprehensive observability platform designed to monitor, debug, and test the quality of outputs from Large Language Models (LLMs). It offers real-time alerts for unexpected output quality changes, execution tracing for every request, and the ability to gradually roll out changes to models and prompts. Developers can debug and re-run issues from production directly in their Integrated Development Environment (IDE). Traceloop integrates seamlessly with the OpenLLMetry SDK, supporting multiple programming languages including Python, JavaScript/TypeScript, Go, and Ruby. The platform provides a range of semantic, syntactic, safety, and structural metrics to assess LLM outputs, such as QA relevancy, faithfulness, text quality, grammar correctness, redundancy detection, focus assessment, text length, word count, PII detection, secret detection, toxicity detection, regex validation, SQL validation, JSON schema validation, and code validation.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Meta machine learning platform designed to help AI practitioners and teams build reliable machine learning models for real-world application
|
Audience
Developers and organizations seeking a tool to manage the observability, debugging capabilities, and output quality assurance in their AI applications
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
$179 per user per month
Free Version
Free Trial
|
Pricing
$59 per month
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationComet
Founded: 2017
United States
www.comet.com
|
Company InformationTraceloop
Founded: 2022
Israel
www.traceloop.com
|
|||||
Alternatives |
Alternatives |
|||||
|
||||||
|
||||||
|
||||||
Categories |
Categories |
|||||
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Machine Learning Features
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
|
||||||
Integrations
Amazon Web Services (AWS)
Microsoft Azure
Python
Axolotl
Clone Protocol
CogniSync
Go
Google Cloud Platform
JSON
JavaScript
|
Integrations
Amazon Web Services (AWS)
Microsoft Azure
Python
Axolotl
Clone Protocol
CogniSync
Go
Google Cloud Platform
JSON
JavaScript
|
|||||
|
|