Codestral EmbedMistral AI
|
voyage-4-largeVoyage AI
|
|||||
Related Products
|
||||||
About
Codestral Embed is Mistral AI's first embedding model, specialized for code, optimized for high-performance code retrieval and semantic understanding. It significantly outperforms leading code embedders in the market today, such as Voyage Code 3, Cohere Embed v4.0, and OpenAI’s large embedding model. Codestral Embed can output embeddings with different dimensions and precisions; for instance, with a dimension of 256 and int8 precision, it still performs better than any model from competitors. The dimensions of the embeddings are ordered by relevance, allowing users to choose the first n dimensions for a smooth trade-off between quality and cost. It excels in retrieval use cases on real-world code data, particularly in benchmarks like SWE-Bench, which is based on real-world GitHub issues and corresponding fixes, and Text2Code (GitHub), relevant for providing context for code completion or editing.
|
About
The Voyage 4 model family from Voyage AI is a new generation of text embedding models designed to produce high-quality semantic vectors with an industry-first shared embedding space that lets different models in the series generate compatible embeddings so developers can mix and match models for document and query embedding to optimize accuracy, latency, and cost trade-offs. It includes voyage-4-large (a flagship model using a mixture-of-experts architecture delivering state-of-the-art retrieval accuracy at about 40% lower serving cost than comparable dense models), voyage-4 (balancing quality and efficiency), voyage-4-lite (high-quality embeddings with fewer parameters and lower compute cost), and the open-weight voyage-4-nano (ideal for local development and prototyping with an Apache 2.0 license). All four models in the series operate in a single shared embedding space, so embeddings generated by different variants are interchangeable, enabling asymmetric retrieval strategies.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Enterprise software teams needing a tool for semantic code search, retrieval-augmented generation, and code analytics across large-scale codebases
|
Audience
AI developers and engineers building retrieval-based AI systems, semantic search, and context-aware agents who need high-accuracy, flexible, and cost-optimized text embedding models
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationMistral AI
Founded: 2023
United States
mistral.ai/news/codestral-embed
|
Company InformationVoyage AI
Founded: 2023
United States
blog.voyageai.com/2026/01/15/voyage-4/
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
Cohere Embed
Gemini
GitHub
Hugging Face
Mistral AI
Mistral Code
MongoDB Atlas
OpenAI
Voyage AI
|
Integrations
Cohere Embed
Gemini
GitHub
Hugging Face
Mistral AI
Mistral Code
MongoDB Atlas
OpenAI
Voyage AI
|
|||||
|
|
|