Related Products
|
||||||
About
The BitNet b1.58 2B4T is a cutting-edge 1-bit Large Language Model (LLM) developed by Microsoft, designed to enhance computational efficiency while maintaining high performance. This model, built with approximately 2 billion parameters and trained on 4 trillion tokens, uses innovative quantization techniques to optimize memory usage, energy consumption, and latency. The platform supports multiple modalities and is particularly valuable for applications in AI-powered text generation, offering substantial efficiency gains compared to full-precision models.
|
About
OLMo 2 is a family of fully open language models developed by the Allen Institute for AI (AI2), designed to provide researchers and developers with transparent access to training data, open-source code, reproducible training recipes, and comprehensive evaluations. These models are trained on up to 5 trillion tokens and are competitive with leading open-weight models like Llama 3.1 on English academic benchmarks. OLMo 2 emphasizes training stability, implementing techniques to prevent loss spikes during long training runs, and utilizes staged training interventions during late pretraining to address capability deficiencies. The models incorporate state-of-the-art post-training methodologies from AI2's Tülu 3, resulting in the creation of OLMo 2-Instruct models. An actionable evaluation framework, the Open Language Modeling Evaluation System (OLMES), was established to guide improvements through development stages, consisting of 20 evaluation benchmarks assessing core capabilities.
|
About
The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
|
||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
||||
Audience
AI developers, researchers, and enterprises looking for a highly efficient, scalable Large Language Model (LLM) that delivers high performance with reduced memory usage, energy consumption, and latency
|
Audience
Developers and researchers searching for a tool to streamline their AI research and operations
|
Audience
Developers interested in a small language model
|
||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
||||
API
Offers API
|
API
Offers API
|
API
Offers API
|
||||
Screenshots and VideosNo images available
|
Screenshots and Videos |
Screenshots and VideosNo images available
|
||||
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
||||
Reviews/
|
Reviews/
|
Reviews/
|
||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
||||
Company InformationMicrosoft
Founded: 1975
United States
microsoft.com
|
Company InformationAi2
Founded: 2014
United States
allenai.org/blog/olmo2
|
Company InformationTinyLlama
github.com/jzhang38/TinyLlama
|
||||
Alternatives |
Alternatives |
Alternatives |
||||
|
|
|
||||
|
|
|
||||
|
|
|
||||
|
|
|||||
Categories |
Categories |
Categories |
||||
Integrations
RunPod
|
Integrations
RunPod
|
|||||
|
|
|