Spring Cloud Data FlowSpring
|
||||||
Related Products
|
||||||
About
Scale from zero to millions of events per second. Arroyo ships as a single, compact binary. Run locally on MacOS or Linux for development, and deploy to production with Docker or Kubernetes. Arroyo is a new kind of stream processing engine, built from the ground up to make real-time easier than batch. Arroyo was designed from the start so that anyone with SQL experience can build reliable, efficient, and correct streaming pipelines. Data scientists and engineers can build end-to-end real-time applications, models, and dashboards, without a separate team of streaming experts. Transform, filter, aggregate, and join data streams by writing SQL, with sub-second results. Your streaming pipelines shouldn't page someone just because Kubernetes decided to reschedule your pods. Arroyo is built to run in modern, elastic cloud environments, from simple container runtimes like Fargate to large, distributed deployments on the Kubernetes logo Kubernetes.
|
About
Microservice-based streaming and batch data processing for Cloud Foundry and Kubernetes. Spring Cloud Data Flow provides tools to create complex topologies for streaming and batch data pipelines. The data pipelines consist of Spring Boot apps, built using the Spring Cloud Stream or Spring Cloud Task microservice frameworks. Spring Cloud Data Flow supports a range of data processing use cases, from ETL to import/export, event streaming, and predictive analytics. The Spring Cloud Data Flow server uses Spring Cloud Deployer, to deploy data pipelines made of Spring Cloud Stream or Spring Cloud Task applications onto modern platforms such as Cloud Foundry and Kubernetes. A selection of pre-built stream and task/batch starter apps for various data integration and processing scenarios facilitate learning and experimentation. Custom stream and task applications, targeting different middleware or data services, can be built using the familiar Spring Boot style programming model.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Individuals in search of a tool to transform, filter, aggregate, and join data streams
|
Audience
Companies and professionals seeking a solution to manage their streaming and batch data processing operations
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationArroyo
United States
www.arroyo.dev/
|
Company InformationSpring
spring.io/projects/spring-cloud-dataflow
|
|||||
Alternatives |
Alternatives |
|||||
|
||||||
|
||||||
Categories |
Categories |
|||||
Integrations
Kubernetes
AWS Fargate
Amazon Kinesis
Apache Avro
Apache Flink
Apache Kafka
Apache Parquet
Cloud Foundry
Confluent
Delta Lake
|
Integrations
Kubernetes
AWS Fargate
Amazon Kinesis
Apache Avro
Apache Flink
Apache Kafka
Apache Parquet
Cloud Foundry
Confluent
Delta Lake
|
|||||
|
|