Amazon SageMakerAmazon
|
||||||
Related Products
|
||||||
About
Amazon SageMaker is an advanced machine learning service that provides an integrated environment for building, training, and deploying machine learning (ML) models. It combines tools for model development, data processing, and AI capabilities in a unified studio, enabling users to collaborate and work faster. SageMaker supports various data sources, such as Amazon S3 data lakes and Amazon Redshift data warehouses, while ensuring enterprise security and governance through its built-in features. The service also offers tools for generative AI applications, making it easier for users to customize and scale AI use cases. SageMaker’s architecture simplifies the AI lifecycle, from data discovery to model deployment, providing a seamless experience for developers.
|
About
Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Machine learning engineers, data scientists, and organizations seeking to develop, deploy, and scale AI solutions efficiently and securely
|
Audience
Companies, professionals and developers in search of a solution to simplify model deployment
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAmazon
Founded: 1994
United States
aws.amazon.com/sagemaker/
|
Company InformationBentoML
United States
www.bentoml.com
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
|||||
Data Labeling Features
Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management
|
||||||
Integrations
Amazon EC2
Amazon Web Services (AWS)
ZenML
AWS IAM Identity Center
Amazon EC2 G4 Instances
Amazon EC2 G5 Instances
Amazon Redshift
Amazon SageMaker Canvas
Amazon SageMaker JumpStart
DataHub
|
Integrations
Amazon EC2
Amazon Web Services (AWS)
ZenML
AWS IAM Identity Center
Amazon EC2 G4 Instances
Amazon EC2 G5 Instances
Amazon Redshift
Amazon SageMaker Canvas
Amazon SageMaker JumpStart
DataHub
|
|||||
|
|
|