Related Products
|
||||||
About
Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener demographics. Features are used repeatedly by multiple teams and feature quality is critical to ensure a highly accurate model. Also, when features used to train models offline in batch are made available for real-time inference, it’s hard to keep the two feature stores synchronized. SageMaker Feature Store provides a secured and unified store for feature use across the ML lifecycle. Store, share, and manage ML model features for training and inference to promote feature reuse across ML applications. Ingest features from any data source including streaming and batch such as application logs, service logs, clickstreams, sensors, etc.
|
About
Users enjoy personalized interactions, creating custom AI models to meet individual needs with decentralized technology, Navigator offers rapid, location-independent responses. Experience innovation where technology complements human expertise. Collaboratively create, manage, and monitor content with co-workers, friends, and AI. Build custom AI models in minutes vs hours. Revitalize large models with attention steering, streamlining training and cutting compute costs. Seamlessly translates user interactions into manageable tasks. It selects and executes the most suitable AI model for each task, delivering responses that align with user expectations. Private forever, with no back doors, distributed storage, and seamless inference. It leverages distributed, edge-friendly technology for lightning-fast interactions, no matter where you are. Join our vibrant distributed storage ecosystem, where you can unlock access to the world's first watermarked universal model dataset.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Enterprises seeking a solution to store, share, and manage ML model features for training
|
Audience
Teams and individuals interested in a tool to create, manage, and monitor content
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAmazon
Founded: 1994
United States
aws.amazon.com/sagemaker/feature-store/
|
Company InformationwebAI
www.webai.com
|
|||||
Alternatives |
Alternatives |
|||||
|
|
||||||
|
|
||||||
|
|
||||||
Categories |
Categories |
|||||
Integrations
AWS Glue
AWS Lake Formation
Amazon Athena
Amazon Kinesis
Amazon Redshift
Amazon S3
Amazon SageMaker
Amazon SageMaker Data Wrangler
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
|
Integrations
AWS Glue
AWS Lake Formation
Amazon Athena
Amazon Kinesis
Amazon Redshift
Amazon S3
Amazon SageMaker
Amazon SageMaker Data Wrangler
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
|
|||||
|
|
|