Compare the Top Columnar Databases that integrate with Stackable as of September 2025

This a list of Columnar Databases that integrate with Stackable. Use the filters on the left to add additional filters for products that have integrations with Stackable. View the products that work with Stackable in the table below.

What are Columnar Databases for Stackable?

Columnar databases, also known as column-oriented databases or column-store databases, are a type of database that store data in columns instead of rows. Columnar databases have some advantages over traditional row databases including speed and efficiency. Compare and read user reviews of the best Columnar Databases for Stackable currently available using the table below. This list is updated regularly.

  • 1
    Apache Druid
    Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures.
  • 2
    Apache HBase

    Apache HBase

    The Apache Software Foundation

    Use Apache HBase™ when you need random, realtime read/write access to your Big Data. This project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Automatic failover support between RegionServers. Easy to use Java API for client access. Thrift gateway and a REST-ful Web service that supports XML, Protobuf, and binary data encoding options. Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia; or via JMX.
  • Previous
  • You're on page 1
  • Next