Best Cloud GPU Providers for AWS Marketplace

Compare the Top Cloud GPU Providers that integrate with AWS Marketplace as of October 2025

This a list of Cloud GPU providers that integrate with AWS Marketplace. Use the filters on the left to add additional filters for products that have integrations with AWS Marketplace. View the products that work with AWS Marketplace in the table below.

What are Cloud GPU Providers for AWS Marketplace?

Cloud GPU providers offer scalable, on-demand access to Graphics Processing Units (GPUs) over the internet, enabling users to perform computationally intensive tasks such as machine learning, deep learning, scientific simulations, and 3D rendering without the need for significant upfront hardware investments. These platforms provide flexibility in resource allocation, allowing users to select GPU types, configurations, and billing models that best suit their specific workloads. By leveraging cloud infrastructure, organizations can accelerate their AI and ML projects, ensuring high performance and reliability. Additionally, the global distribution of data centers ensures low-latency access to computing resources, enhancing the efficiency of real-time applications. The competitive landscape among providers has led to continuous improvements in service offerings, pricing, and support, catering to a wide range of industries and use cases. Compare and read user reviews of the best Cloud GPU providers for AWS Marketplace currently available using the table below. This list is updated regularly.

  • 1
    Amazon EC2
    Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure, resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers. Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction. It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment. Amazon EC2 delivers the broadest choice of compute, networking (up to 400 Gbps), and storage services purpose-built to optimize price performance for ML projects. Build, test, and sign on-demand macOS workloads. Access environments in minutes, dynamically scale capacity as needed, and benefit from AWS’s pay-as-you-go pricing. Access the on-demand infrastructure and capacity you need to run HPC applications faster and cost-effectively. Amazon EC2 delivers secure, reliable, high-performance, and cost-effective compute infrastructure to meet demanding business needs.
  • 2
    NVIDIA GPU-Optimized AMI
    The NVIDIA GPU-Optimized AMI is a virtual machine image for accelerating your GPU accelerated Machine Learning, Deep Learning, Data Science and HPC workloads. Using this AMI, you can spin up a GPU-accelerated EC2 VM instance in minutes with a pre-installed Ubuntu OS, GPU driver, Docker and NVIDIA container toolkit. This AMI provides easy access to NVIDIA's NGC Catalog, a hub for GPU-optimized software, for pulling & running performance-tuned, tested, and NVIDIA certified docker containers. The NGC catalog provides free access to containerized AI, Data Science, and HPC applications, pre-trained models, AI SDKs and other resources to enable data scientists, developers, and researchers to focus on building and deploying solutions. This GPU-optimized AMI is free with an option to purchase enterprise support offered through NVIDIA AI Enterprise. For how to get support for this AMI, scroll down to 'Support Information'
    Starting Price: $3.06 per hour
  • 3
    NVIDIA virtual GPU
    NVIDIA virtual GPU (vGPU) software enables powerful GPU performance for workloads ranging from graphics-rich virtual workstations to data science and AI, enabling IT to leverage the management and security benefits of virtualization as well as the performance of NVIDIA GPUs required for modern workloads. Installed on a physical GPU in a cloud or enterprise data center server, NVIDIA vGPU software creates virtual GPUs that can be shared across multiple virtual machines, and accessed by any device, anywhere. Deliver performance virtually indistinguishable from a bare metal environment. Leverage common data center management tools such as live migration. Provision GPU resources with fractional or multi-GPU virtual machine (VM) instances. Responsive to changing business requirements and remote teams.
  • Previous
  • You're on page 1
  • Next