Best Big Data Platforms for Vertex AI Notebooks

Compare the Top Big Data Platforms that integrate with Vertex AI Notebooks as of October 2025

This a list of Big Data platforms that integrate with Vertex AI Notebooks. Use the filters on the left to add additional filters for products that have integrations with Vertex AI Notebooks. View the products that work with Vertex AI Notebooks in the table below.

What are Big Data Platforms for Vertex AI Notebooks?

Big data platforms are systems that provide the infrastructure and tools needed to store, manage, process, and analyze large volumes of structured and unstructured data. These platforms typically offer scalable storage solutions, high-performance computing capabilities, and advanced analytics tools to help organizations extract insights from massive datasets. Big data platforms often support technologies such as distributed computing, machine learning, and real-time data processing, allowing businesses to leverage their data for decision-making, predictive analytics, and process optimization. By using these platforms, organizations can handle complex datasets efficiently, uncover hidden patterns, and drive data-driven innovation. Compare and read user reviews of the best Big Data platforms for Vertex AI Notebooks currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is designed to handle and analyze big data, making it an ideal tool for businesses working with massive datasets. Whether you are processing gigabytes or petabytes, BigQuery scales automatically and delivers high-performance queries, making it highly efficient. With BigQuery, organizations can analyze data at unprecedented speed, helping them stay ahead in fast-moving industries. New customers can leverage the $300 in free credits to explore BigQuery's big data capabilities, gaining practical experience in managing and analyzing large volumes of information. The platform’s serverless architecture ensures that users never have to worry about scaling issues, making big data management simpler than ever.
    Starting Price: Free ($300 in free credits)
    View Platform
    Visit Website
  • 2
    Google Cloud Platform
    Google Cloud Platform excels in managing and analyzing big data through tools like BigQuery, a serverless data warehouse for fast querying and analysis. GCP also offers services such as Dataflow, Dataproc, and Pub/Sub, which allow businesses to efficiently process and analyze large datasets. With the added benefit of $300 in free credits for new customers to run, test, and deploy workloads, organizations can start exploring big data solutions without the financial commitment, accelerating their data-driven insights and innovations. The platform’s highly scalable architecture enables companies to process terabytes to petabytes of data quickly and at a fraction of the cost of traditional data solutions. GCP's big data solutions are designed to integrate well with machine learning tools, creating a comprehensive environment for data scientists and analysts to gain valuable insights.
    Leader badge
    Starting Price: Free ($300 in free credits)
    View Platform
    Visit Website
  • 3
    Google Cloud Dataproc
    Dataproc makes open source data and analytics processing fast, easy, and more secure in the cloud. Build custom OSS clusters on custom machines faster. Whether you need extra memory for Presto or GPUs for Apache Spark machine learning, Dataproc can help accelerate your data and analytics processing by spinning up a purpose-built cluster in 90 seconds. Easy and affordable cluster management. With autoscaling, idle cluster deletion, per-second pricing, and more, Dataproc can help reduce the total cost of ownership of OSS so you can focus your time and resources elsewhere. Security built in by default. Encryption by default helps ensure no piece of data is unprotected. With JobsAPI and Component Gateway, you can define permissions for Cloud IAM clusters, without having to set up networking or gateway nodes.
  • 4
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • Previous
  • You're on page 1
  • Next