Best Big Data Platforms for Style Intelligence

Compare the Top Big Data Platforms that integrate with Style Intelligence as of December 2025

This a list of Big Data platforms that integrate with Style Intelligence. Use the filters on the left to add additional filters for products that have integrations with Style Intelligence. View the products that work with Style Intelligence in the table below.

What are Big Data Platforms for Style Intelligence?

Big data platforms are systems that provide the infrastructure and tools needed to store, manage, process, and analyze large volumes of structured and unstructured data. These platforms typically offer scalable storage solutions, high-performance computing capabilities, and advanced analytics tools to help organizations extract insights from massive datasets. Big data platforms often support technologies such as distributed computing, machine learning, and real-time data processing, allowing businesses to leverage their data for decision-making, predictive analytics, and process optimization. By using these platforms, organizations can handle complex datasets efficiently, uncover hidden patterns, and drive data-driven innovation. Compare and read user reviews of the best Big Data platforms for Style Intelligence currently available using the table below. This list is updated regularly.

  • 1
    MongoDB

    MongoDB

    MongoDB

    MongoDB is a general purpose, document-based, distributed database built for modern application developers and for the cloud era. No database is more productive to use. Ship and iterate 3–5x faster with our flexible document data model and a unified query interface for any use case. Whether it’s your first customer or 20 million users around the world, meet your performance SLAs in any environment. Easily ensure high availability, protect data integrity, and meet the security and compliance standards for your mission-critical workloads. An integrated suite of cloud database services that allow you to address a wide variety of use cases, from transactional to analytical, from search to data visualizations. Launch secure mobile apps with native, edge-to-cloud sync and automatic conflict resolution. Run MongoDB anywhere, from your laptop to your data center.
    Leader badge
    Starting Price: Free
  • 2
    Keen

    Keen

    Keen.io

    Keen is the fully managed event streaming platform. Built upon trusted Apache Kafka, we make it easier than ever for you to collect massive volumes of event data with our real-time data pipeline. Use Keen’s powerful REST API and SDKs to collect event data from anything connected to the internet. Our platform allows you to store your data securely decreasing your operational and delivery risk with Keen. With storage infrastructure powered by Apache Cassandra, data is totally secure through transfer through HTTPS and TLS, then stored with multi-layer AES encryption. Once data is securely stored, utilize our Access Keys to be able to present data in arbitrary ways without having to re-architect your security or data model. Or, take advantage of Role-based Access Control (RBAC), allowing for completely customizable permission tiers, down to specific data points or queries.
    Starting Price: $149 per month
  • 3
    Hadoop

    Hadoop

    Apache Software Foundation

    The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures. A wide variety of companies and organizations use Hadoop for both research and production. Users are encouraged to add themselves to the Hadoop PoweredBy wiki page. Apache Hadoop 3.3.4 incorporates a number of significant enhancements over the previous major release line (hadoop-3.2).
  • 4
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 5
    HPE Ezmeral Data Fabric

    HPE Ezmeral Data Fabric

    Hewlett Packard Enterprise

    Access HPE Ezmeral Data Fabric Software as a fully managed service. Register now for a 300GB instance to try out the latest features and capabilities. Increasingly enterprise data is being distributed across a growing number of locations while at the same time, the demand for insights continues to grow as users expect richer, high-quality data insights. Hybrid cloud solutions offer the best outcomes in terms of cost, data placement, workload control, and user experience. The upside of hybrid is the ability to better match applications with the appropriate services across the application lifecycle. The downside of hybrid is that it adds a new dimension of complexity such as limited data visibility, the need to use multiple analytic formats, and the potential for organizational risk and increased costs.
  • 6
    Cloudera

    Cloudera

    Cloudera

    Manage and secure the data lifecycle from the Edge to AI in any cloud or data center. Operates across all major public clouds and the private cloud with a public cloud experience everywhere. Integrates data management and analytic experiences across the data lifecycle for data anywhere. Delivers security, compliance, migration, and metadata management across all environments. Open source, open integrations, extensible, & open to multiple data stores and compute architectures. Deliver easier, faster, and safer self-service analytics experiences. Provide self-service access to integrated, multi-function analytics on centrally managed and secured business data while deploying a consistent experience anywhere—on premises or in hybrid and multi-cloud. Enjoy consistent data security, governance, lineage, and control, while deploying the powerful, easy-to-use cloud analytics experiences business users require and eliminating their need for shadow IT solutions.
  • 7
    Actian Vector
    High-performance vectorized columnar analytics database. Consistent performance leader on TPC-H decision support benchmark over last 5 years. Industry-standard ANSI SQL:2003 support plus integration for extensive set of data formats. Updates, security, management, replication. Actian Vector is the industry’s fastest analytic database. Vector’s ability to handle continuous updates without a performance penalty makes it an Operational Data Warehouse (ODW) capable of incorporating the latest business information into your analytic decision-making. Vector achieves extreme performance with full ACID compliance on commodity hardware with the flexibility to deploy on premises, on AWS or Azure, with little or no database tuning. Actian Vector is available on Microsoft Windows for single server deployment. The distribution includes Actian Director for easy GUI based management in addition to the command line interface to easy scripting.
  • Previous
  • You're on page 1
  • Next