Compare the Top Big Data Platforms that integrate with Netdata as of September 2025

This a list of Big Data platforms that integrate with Netdata. Use the filters on the left to add additional filters for products that have integrations with Netdata. View the products that work with Netdata in the table below.

What are Big Data Platforms for Netdata?

Big data platforms are systems that provide the infrastructure and tools needed to store, manage, process, and analyze large volumes of structured and unstructured data. These platforms typically offer scalable storage solutions, high-performance computing capabilities, and advanced analytics tools to help organizations extract insights from massive datasets. Big data platforms often support technologies such as distributed computing, machine learning, and real-time data processing, allowing businesses to leverage their data for decision-making, predictive analytics, and process optimization. By using these platforms, organizations can handle complex datasets efficiently, uncover hidden patterns, and drive data-driven innovation. Compare and read user reviews of the best Big Data platforms for Netdata currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is designed to handle and analyze big data, making it an ideal tool for businesses working with massive datasets. Whether you are processing gigabytes or petabytes, BigQuery scales automatically and delivers high-performance queries, making it highly efficient. With BigQuery, organizations can analyze data at unprecedented speed, helping them stay ahead in fast-moving industries. New customers can leverage the $300 in free credits to explore BigQuery's big data capabilities, gaining practical experience in managing and analyzing large volumes of information. The platform’s serverless architecture ensures that users never have to worry about scaling issues, making big data management simpler than ever.
    Starting Price: Free ($300 in free credits)
    View Platform
    Visit Website
  • 2
    Google Cloud Platform
    Google Cloud Platform excels in managing and analyzing big data through tools like BigQuery, a serverless data warehouse for fast querying and analysis. GCP also offers services such as Dataflow, Dataproc, and Pub/Sub, which allow businesses to efficiently process and analyze large datasets. With the added benefit of $300 in free credits for new customers to run, test, and deploy workloads, organizations can start exploring big data solutions without the financial commitment, accelerating their data-driven insights and innovations. The platform’s highly scalable architecture enables companies to process terabytes to petabytes of data quickly and at a fraction of the cost of traditional data solutions. GCP's big data solutions are designed to integrate well with machine learning tools, creating a comprehensive environment for data scientists and analysts to gain valuable insights.
    Leader badge
    Starting Price: Free ($300 in free credits)
    View Platform
    Visit Website
  • 3
    MongoDB

    MongoDB

    MongoDB

    MongoDB is a general purpose, document-based, distributed database built for modern application developers and for the cloud era. No database is more productive to use. Ship and iterate 3–5x faster with our flexible document data model and a unified query interface for any use case. Whether it’s your first customer or 20 million users around the world, meet your performance SLAs in any environment. Easily ensure high availability, protect data integrity, and meet the security and compliance standards for your mission-critical workloads. An integrated suite of cloud database services that allow you to address a wide variety of use cases, from transactional to analytical, from search to data visualizations. Launch secure mobile apps with native, edge-to-cloud sync and automatic conflict resolution. Run MongoDB anywhere, from your laptop to your data center.
    Leader badge
    Starting Price: Free
  • 4
    Elasticsearch
    Elastic is a search company. As the creators of the Elastic Stack (Elasticsearch, Kibana, Beats, and Logstash), Elastic builds self-managed and SaaS offerings that make data usable in real time and at scale for search, logging, security, and analytics use cases. Elastic's global community has more than 100,000 members across 45 countries. Since its initial release, Elastic's products have achieved more than 400 million cumulative downloads. Today thousands of organizations, including Cisco, eBay, Dell, Goldman Sachs, Groupon, HP, Microsoft, Netflix, The New York Times, Uber, Verizon, Yelp, and Wikipedia, use the Elastic Stack, and Elastic Cloud to power mission-critical systems that drive new revenue opportunities and massive cost savings. Elastic has headquarters in Amsterdam, The Netherlands, and Mountain View, California; and has over 1,000 employees in more than 35 countries around the world.
  • 5
    OpenText Analytics Database (Vertica)
    OpenText Analytics Database is a high-performance, scalable analytics platform that enables organizations to analyze massive data sets quickly and cost-effectively. It supports real-time analytics and in-database machine learning to deliver actionable business insights. The platform can be deployed flexibly across hybrid, multi-cloud, and on-premises environments to optimize infrastructure and reduce total cost of ownership. Its massively parallel processing (MPP) architecture handles complex queries efficiently, regardless of data size. OpenText Analytics Database also features compatibility with data lakehouse architectures, supporting formats like Parquet and ORC. With built-in machine learning and broad language support, it empowers users from SQL experts to Python developers to derive predictive insights.
  • 6
    SAP HANA
    SAP HANA in-memory database is for transactional and analytical workloads with any data type — on a single data copy. It breaks down the transactional and analytical silos in organizations, for quick decision-making, on premise and in the cloud. Innovate without boundaries on a database management system, where you can develop intelligent and live solutions for quick decision-making on a single data copy. And with advanced analytics, you can support next-generation transactional processing. Build data solutions with cloud-native scalability, speed, and performance. With the SAP HANA Cloud database, you can gain trusted, business-ready information from a single solution, while enabling security, privacy, and anonymization with proven enterprise reliability. An intelligent enterprise runs on insight from data – and more than ever, this insight must be delivered in real time.
  • 7
    Hadoop

    Hadoop

    Apache Software Foundation

    The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures. A wide variety of companies and organizations use Hadoop for both research and production. Users are encouraged to add themselves to the Hadoop PoweredBy wiki page. Apache Hadoop 3.3.4 incorporates a number of significant enhancements over the previous major release line (hadoop-3.2).
  • Previous
  • You're on page 1
  • Next