Compare the Top Big Data Platforms that integrate with Kubernetes as of September 2025

This a list of Big Data platforms that integrate with Kubernetes. Use the filters on the left to add additional filters for products that have integrations with Kubernetes. View the products that work with Kubernetes in the table below.

What are Big Data Platforms for Kubernetes?

Big data platforms are systems that provide the infrastructure and tools needed to store, manage, process, and analyze large volumes of structured and unstructured data. These platforms typically offer scalable storage solutions, high-performance computing capabilities, and advanced analytics tools to help organizations extract insights from massive datasets. Big data platforms often support technologies such as distributed computing, machine learning, and real-time data processing, allowing businesses to leverage their data for decision-making, predictive analytics, and process optimization. By using these platforms, organizations can handle complex datasets efficiently, uncover hidden patterns, and drive data-driven innovation. Compare and read user reviews of the best Big Data platforms for Kubernetes currently available using the table below. This list is updated regularly.

  • 1
    MongoDB Atlas
    The most innovative cloud database service on the market, with unmatched data distribution and mobility across AWS, Azure, and Google Cloud, built-in automation for resource and workload optimization, and so much more. MongoDB Atlas is the global cloud database service for modern applications. Deploy fully managed MongoDB across AWS, Google Cloud, and Azure with best-in-class automation and proven practices that guarantee availability, scalability, and compliance with the most demanding data security and privacy standards. The best way to deploy, run, and scale MongoDB in the cloud. MongoDB Atlas offers built-in security controls for all your data. Enable enterprise-grade features to integrate with your existing security protocols and compliance standards. With MongoDB Atlas, your data is protected with preconfigured security features for authentication, authorization, encryption, and more.
    Starting Price: $0.08/hour
    View Platform
    Visit Website
  • 2
    Trino

    Trino

    Trino

    Trino is a query engine that runs at ludicrous speed. Fast-distributed SQL query engine for big data analytics that helps you explore your data universe. Trino is a highly parallel and distributed query engine, that is built from the ground up for efficient, low-latency analytics. The largest organizations in the world use Trino to query exabyte-scale data lakes and massive data warehouses alike. Supports diverse use cases, ad-hoc analytics at interactive speeds, massive multi-hour batch queries, and high-volume apps that perform sub-second queries. Trino is an ANSI SQL-compliant query engine, that works with BI tools such as R, Tableau, Power BI, Superset, and many others. You can natively query data in Hadoop, S3, Cassandra, MySQL, and many others, without the need for complex, slow, and error-prone processes for copying the data. Access data from multiple systems within a single query.
    Starting Price: Free
  • 3
    Hydrolix

    Hydrolix

    Hydrolix

    Hydrolix is a streaming data lake that combines decoupled storage, indexed search, and stream processing to deliver real-time query performance at terabyte-scale for a radically lower cost. CFOs love the 4x reduction in data retention costs. Product teams love 4x more data to work with. Spin up resources when you need them and scale to zero when you don’t. Fine-tune resource consumption and performance by workload to control costs. Imagine what you can build when you don’t have to sacrifice data because of budget. Ingest, enrich, and transform log data from multiple sources including Kafka, Kinesis, and HTTP. Return just the data you need, no matter how big your data is. Reduce latency and costs, eliminate timeouts, and brute force queries. Storage is decoupled from ingest and query, allowing each to independently scale to meet performance and budget targets. Hydrolix’s high-density compression (HDX) typically reduces 1TB of stored data to 55GB.
    Starting Price: $2,237 per month
  • 4
    Protegrity

    Protegrity

    Protegrity

    Our platform allows businesses to use data—including its application in advanced analytics, machine learning, and AI—to do great things without worrying about putting customers, employees, or intellectual property at risk. The Protegrity Data Protection Platform doesn't just secure data—it simultaneously classifies and discovers data while protecting it. You can't protect what you don't know you have. Our platform first classifies data, allowing users to categorize the type of data that can mostly be in the public domain. With those classifications established, the platform then leverages machine learning algorithms to discover that type of data. Classification and discovery finds the data that needs to be protected. Whether encrypting, tokenizing, or applying privacy methods, the platform secures the data behind the many operational systems that drive the day-to-day functions of business, as well as the analytical systems behind decision-making.
  • 5
    Google Cloud Dataproc
    Dataproc makes open source data and analytics processing fast, easy, and more secure in the cloud. Build custom OSS clusters on custom machines faster. Whether you need extra memory for Presto or GPUs for Apache Spark machine learning, Dataproc can help accelerate your data and analytics processing by spinning up a purpose-built cluster in 90 seconds. Easy and affordable cluster management. With autoscaling, idle cluster deletion, per-second pricing, and more, Dataproc can help reduce the total cost of ownership of OSS so you can focus your time and resources elsewhere. Security built in by default. Encryption by default helps ensure no piece of data is unprotected. With JobsAPI and Component Gateway, you can define permissions for Cloud IAM clusters, without having to set up networking or gateway nodes.
  • 6
    Tengu

    Tengu

    Tengu

    TENGU is a DataOps Orchestration Platform that works as a central workspace for data profiles of all levels. It provides data integration, extraction, transformation, loading all within it’s graph view UI in which you can intuitively monitor your data environment. By using the platform, business, analytics & data teams need fewer meetings and service tickets to collect data, and can start right away with the data relevant to furthering the company. The Platform offers a unique graph view in which every element is automatically generated with all available info based on metadata. While allowing you to perform all necessary actions from the same workspace. Enhance collaboration and efficiency, with the ability to quickly add and share comments, documentation, tags, groups. The platform enables anyone to get straight to the data with self-service. Thanks to the many automations and low to no-code functionalities and built-in assistant.
  • 7
    Starburst Enterprise

    Starburst Enterprise

    Starburst Data

    Starburst helps you make better decisions with fast access to all your data; Without the complexity of data movement and copies. Your company has more data than ever before, but your data teams are stuck waiting to analyze it. Starburst unlocks access to data where it lives, no data movement required, giving your teams fast & accurate access to more data for analysis. Starburst Enterprise is a fully supported, production-tested and enterprise-grade distribution of open source Trino (formerly Presto® SQL). It improves performance and security while making it easy to deploy, connect, and manage your Trino environment. Through connecting to any source of data – whether it’s located on-premise, in the cloud, or across a hybrid cloud environment – Starburst lets your team use the analytics tools they already know & love while accessing data that lives anywhere.
  • 8
    IBM Db2 Big SQL
    A hybrid SQL-on-Hadoop engine delivering advanced, security-rich data query across enterprise big data sources, including Hadoop, object storage and data warehouses. IBM Db2 Big SQL is an enterprise-grade, hybrid ANSI-compliant SQL-on-Hadoop engine, delivering massively parallel processing (MPP) and advanced data query. Db2 Big SQL offers a single database connection or query for disparate sources such as Hadoop HDFS and WebHDFS, RDMS, NoSQL databases, and object stores. Benefit from low latency, high performance, data security, SQL compatibility, and federation capabilities to do ad hoc and complex queries. Db2 Big SQL is now available in 2 variations. It can be integrated with Cloudera Data Platform, or accessed as a cloud-native service on the IBM Cloud Pak® for Data platform. Access and analyze data and perform queries on batch and real-time data across sources, like Hadoop, object stores and data warehouses.
  • 9
    Astro by Astronomer
    For data teams looking to increase the availability of trusted data, Astronomer provides Astro, a modern data orchestration platform, powered by Apache Airflow, that enables the entire data team to build, run, and observe data pipelines-as-code. Astronomer is the commercial developer of Airflow, the de facto standard for expressing data flows as code, used by hundreds of thousands of teams across the world.
  • 10
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 11
    Wavo

    Wavo

    Wavo

    We’ve released a revolutionary big data platform that gathers all information about a music business, providing a single source of truth for decisions. Every music business has hundreds of data sources. But they are siloed and fragmented. Our platform identifies and connects them to build a foundation of quality data that can be applied to all daily music business operations. To work efficiently and securely—and to surface valuable insight no one else can—record labels and agencies require a sophisticated data management and governance system, so that data is available, relevant, and usable at all times. As data sources are ingested into Wavo’s Big Data Platform, machine learning is deployed to tag data based on personalized templates, making it easy to access and drill-down into important information. This enables everyone in a music business to activate and deliver business-ready data, backed up and organized for immediate value.
  • 12
    Varada

    Varada

    Varada

    Varada’s dynamic and adaptive big data indexing solution enables to balance performance and cost with zero data-ops. Varada’s unique big data indexing technology serves as a smart acceleration layer on your data lake, which remains the single source of truth, and runs in the customer cloud environment (VPC). Varada enables data teams to democratize data by operationalizing the entire data lake while ensuring interactive performance, without the need to move data, model or manually optimize. Our secret sauce is our ability to automatically and dynamically index relevant data, at the structure and granularity of the source. Varada enables any query to meet continuously evolving performance and concurrency requirements for users and analytics API calls, while keeping costs predictable and under control. The platform seamlessly chooses which queries to accelerate and which data to index. Varada elastically adjusts the cluster to meet demand and optimize cost and performance.
  • 13
    OctoData

    OctoData

    SoyHuCe

    OctoData is deployed at a lower cost, in Cloud hosting and includes personalized support from the definition of your needs to the use of the solution. OctoData is based on innovative open-source technologies and knows how to adapt to open up to future possibilities. Its Supervisor offers a management interface that allows you to quickly capture, store and exploit a growing quantity and variety of data. With OctoData, prototype and industrialize your massive data recovery solutions in the same environment, including in real time. Thanks to the exploitation of your data, obtain precise reports, explore new possibilities, increase your productivity and gain in profitability.
  • Previous
  • You're on page 1
  • Next