Compare the Top Big Data Platforms that integrate with Apache HBase as of October 2025

This a list of Big Data platforms that integrate with Apache HBase. Use the filters on the left to add additional filters for products that have integrations with Apache HBase. View the products that work with Apache HBase in the table below.

What are Big Data Platforms for Apache HBase?

Big data platforms are systems that provide the infrastructure and tools needed to store, manage, process, and analyze large volumes of structured and unstructured data. These platforms typically offer scalable storage solutions, high-performance computing capabilities, and advanced analytics tools to help organizations extract insights from massive datasets. Big data platforms often support technologies such as distributed computing, machine learning, and real-time data processing, allowing businesses to leverage their data for decision-making, predictive analytics, and process optimization. By using these platforms, organizations can handle complex datasets efficiently, uncover hidden patterns, and drive data-driven innovation. Compare and read user reviews of the best Big Data platforms for Apache HBase currently available using the table below. This list is updated regularly.

  • 1
    Apache Spark

    Apache Spark

    Apache Software Foundation

    Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
  • 2
    Amazon EMR
    Amazon EMR is the industry-leading cloud big data platform for processing vast amounts of data using open-source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. With EMR you can run Petabyte-scale analysis at less than half of the cost of traditional on-premises solutions and over 3x faster than standard Apache Spark. For short-running jobs, you can spin up and spin down clusters and pay per second for the instances used. For long-running workloads, you can create highly available clusters that automatically scale to meet demand. If you have existing on-premises deployments of open-source tools such as Apache Spark and Apache Hive, you can also run EMR clusters on AWS Outposts. Analyze data using open-source ML frameworks such as Apache Spark MLlib, TensorFlow, and Apache MXNet. Connect to Amazon SageMaker Studio for large-scale model training, analysis, and reporting.
  • 3
    Azure HDInsight
    Run popular open-source frameworks—including Apache Hadoop, Spark, Hive, Kafka, and more—using Azure HDInsight, a customizable, enterprise-grade service for open-source analytics. Effortlessly process massive amounts of data and get all the benefits of the broad open-source project ecosystem with the global scale of Azure. Easily migrate your big data workloads and processing to the cloud. Open-source projects and clusters are easy to spin up quickly without the need to install hardware or manage infrastructure. Big data clusters reduce costs through autoscaling and pricing tiers that allow you to pay for only what you use. Enterprise-grade security and industry-leading compliance with more than 30 certifications helps protect your data. Optimized components for open-source technologies such as Hadoop and Spark keep you up to date.
  • Previous
  • You're on page 1
  • Next