Best Artificial Intelligence Software for TensorWave

Compare the Top Artificial Intelligence Software that integrates with TensorWave as of September 2025

This a list of Artificial Intelligence software that integrates with TensorWave. Use the filters on the left to add additional filters for products that have integrations with TensorWave. View the products that work with TensorWave in the table below.

What is Artificial Intelligence Software for TensorWave?

Artificial Intelligence (AI) software is computer technology designed to simulate human intelligence. It can be used to perform tasks that require cognitive abilities, such as problem-solving, data analysis, visual perception and language translation. AI applications range from voice recognition and virtual assistants to autonomous vehicles and medical diagnostics. Compare and read user reviews of the best Artificial Intelligence software for TensorWave currently available using the table below. This list is updated regularly.

  • 1
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
    Starting Price: Free
  • 2
    PyTorch

    PyTorch

    PyTorch

    Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.
  • 3
    Hugging Face

    Hugging Face

    Hugging Face

    Hugging Face is a leading platform for AI and machine learning, offering a vast hub for models, datasets, and tools for natural language processing (NLP) and beyond. The platform supports a wide range of applications, from text, image, and audio to 3D data analysis. Hugging Face fosters collaboration among researchers, developers, and companies by providing open-source tools like Transformers, Diffusers, and Tokenizers. It enables users to build, share, and access pre-trained models, accelerating AI development for a variety of industries.
    Starting Price: $9 per month
  • 4
    Ollama

    Ollama

    Ollama

    Ollama is an innovative platform that focuses on providing AI-powered tools and services, designed to make it easier for users to interact with and build AI-driven applications. Run AI models locally. By offering a range of solutions, including natural language processing models and customizable AI features, Ollama empowers developers, businesses, and organizations to integrate advanced machine learning technologies into their workflows. With an emphasis on usability and accessibility, Ollama strives to simplify the process of working with AI, making it an appealing option for those looking to harness the potential of artificial intelligence in their projects.
    Starting Price: Free
  • 5
    Meta AI
    Meta AI is an intelligent assistant that is capable of complex reasoning, following instructions, visualizing ideas, and solving nuanced problems. Meta AI is an intelligent assistant built on Meta's most advanced model. It is designed to answer any question you might have, help with writing, provide step-by-step advice, and create images to share with friends. It is available within Meta's family of apps, smart glasses, and web platforms.
    Starting Price: Free
  • 6
    Axolotl

    Axolotl

    Axolotl

    ​Axolotl is an open source tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. It enables users to train models, supporting methods like full fine-tuning, LoRA, QLoRA, ReLoRA, and GPTQ. Users can customize configurations using simple YAML files or command-line interface overrides, and load different dataset formats, including custom or pre-tokenized datasets. Axolotl integrates with technologies like xFormers, Flash Attention, Liger kernel, RoPE scaling, and multipacking, and works with single or multiple GPUs via Fully Sharded Data Parallel (FSDP) or DeepSpeed. It can be run locally or on the cloud using Docker and supports logging results and checkpoints to several platforms. It is designed to make fine-tuning AI models friendly, fast, and fun, without sacrificing functionality or scale.
    Starting Price: Free
  • 7
    LLaMA-Factory

    LLaMA-Factory

    hoshi-hiyouga

    ​LLaMA-Factory is an open source platform designed to streamline and enhance the fine-tuning process of over 100 Large Language Models (LLMs) and Vision-Language Models (VLMs). It supports various fine-tuning techniques, including Low-Rank Adaptation (LoRA), Quantized LoRA (QLoRA), and Prefix-Tuning, allowing users to customize models efficiently. It has demonstrated significant performance improvements; for instance, its LoRA tuning offers up to 3.7 times faster training speeds with better Rouge scores on advertising text generation tasks compared to traditional methods. LLaMA-Factory's architecture is designed for flexibility, supporting a wide range of model architectures and configurations. Users can easily integrate their datasets and utilize the platform's tools to achieve optimized fine-tuning results. Detailed documentation and diverse examples are provided to assist users in navigating the fine-tuning process effectively.
    Starting Price: Free
  • Previous
  • You're on page 1
  • Next