Best Artificial Intelligence Software for PyTorch - Page 4

Compare the Top Artificial Intelligence Software that integrates with PyTorch as of June 2025 - Page 4

This a list of Artificial Intelligence software that integrates with PyTorch. Use the filters on the left to add additional filters for products that have integrations with PyTorch. View the products that work with PyTorch in the table below.

  • 1
    Amazon EC2 Capacity Blocks for ML
    Amazon EC2 Capacity Blocks for ML enable you to reserve accelerated compute instances in Amazon EC2 UltraClusters for your machine learning workloads. This service supports Amazon EC2 P5en, P5e, P5, and P4d instances, powered by NVIDIA H200, H100, and A100 Tensor Core GPUs, respectively, as well as Trn2 and Trn1 instances powered by AWS Trainium. You can reserve these instances for up to six months in cluster sizes ranging from one to 64 instances (512 GPUs or 1,024 Trainium chips), providing flexibility for various ML workloads. Reservations can be made up to eight weeks in advance. By colocating in Amazon EC2 UltraClusters, Capacity Blocks offer low-latency, high-throughput network connectivity, facilitating efficient distributed training. This setup ensures predictable access to high-performance computing resources, allowing you to plan ML development confidently, run experiments, build prototypes, and accommodate future surges in demand for ML applications.
  • 2
    Amazon EC2 UltraClusters
    Amazon EC2 UltraClusters enable you to scale to thousands of GPUs or purpose-built machine learning accelerators, such as AWS Trainium, providing on-demand access to supercomputing-class performance. They democratize supercomputing for ML, generative AI, and high-performance computing developers through a simple pay-as-you-go model without setup or maintenance costs. UltraClusters consist of thousands of accelerated EC2 instances co-located in a given AWS Availability Zone, interconnected using Elastic Fabric Adapter (EFA) networking in a petabit-scale nonblocking network. This architecture offers high-performance networking and access to Amazon FSx for Lustre, a fully managed shared storage built on a high-performance parallel file system, enabling rapid processing of massive datasets with sub-millisecond latencies. EC2 UltraClusters provide scale-out capabilities for distributed ML training and tightly coupled HPC workloads, reducing training times.
  • 3
    Amazon EC2 Trn2 Instances
    Amazon EC2 Trn2 instances, powered by AWS Trainium2 chips, are purpose-built for high-performance deep learning training of generative AI models, including large language models and diffusion models. They offer up to 50% cost-to-train savings over comparable Amazon EC2 instances. Trn2 instances support up to 16 Trainium2 accelerators, providing up to 3 petaflops of FP16/BF16 compute power and 512 GB of high-bandwidth memory. To facilitate efficient data and model parallelism, Trn2 instances feature NeuronLink, a high-speed, nonblocking interconnect, and support up to 1600 Gbps of second-generation Elastic Fabric Adapter (EFAv2) network bandwidth. They are deployed in EC2 UltraClusters, enabling scaling up to 30,000 Trainium2 chips interconnected with a nonblocking petabit-scale network, delivering 6 exaflops of compute performance. The AWS Neuron SDK integrates natively with popular machine learning frameworks like PyTorch and TensorFlow.
  • 4
    AWS Elastic Fabric Adapter (EFA)
    Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances that enables customers to run applications requiring high levels of inter-node communications at scale on AWS. Its custom-built operating system (OS) bypass hardware interface enhances the performance of inter-instance communications, which is critical to scaling these applications. With EFA, High-Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. EFA is available as an optional EC2 networking feature that you can enable on any supported EC2 instance at no additional cost. Plus, it works with the most commonly used interfaces, APIs, and libraries for inter-node communications.
  • 5
    EasyODM

    EasyODM

    EasyODM

    Our automated visual quality inspection software optimizes efficiency, minimizes defects, and significantly reduces production costs, resulting in substantial annual savings for our valued clients. EasyODM combines the power of computer vision and machine learning to revolutionize quality inspection, enabling machines to unlock the cognitive capabilities of AI and transform data into actionable insights. EasyODM combines the power of computer vision and machine learning to revolutionize quality inspection, enabling machines to unlock the cognitive capabilities of AI and transform data into actionable insights. Our automated visual quality inspection software optimizes efficiency, minimizes defects, and significantly reduces production costs, resulting in substantial annual savings for our valued clients.
  • 6
    PaliGemma 2
    PaliGemma 2, the next evolution in tunable vision-language models, builds upon the performant Gemma 2 models, adding the power of vision and making it easier than ever to fine-tune for exceptional performance. With PaliGemma 2, these models can see, understand, and interact with visual input, opening up a world of new possibilities. It offers scalable performance with multiple model sizes (3B, 10B, 28B parameters) and resolutions (224px, 448px, 896px). PaliGemma 2 generates detailed, contextually relevant captions for images, going beyond simple object identification to describe actions, emotions, and the overall narrative of the scene. Our research demonstrates leading performance in chemical formula recognition, music score recognition, spatial reasoning, and chest X-ray report generation, as detailed in the technical report. Upgrading to PaliGemma 2 is a breeze for existing PaliGemma users.
  • 7
    VLLM

    VLLM

    VLLM

    VLLM is a high-performance library designed to facilitate efficient inference and serving of Large Language Models (LLMs). Originally developed in the Sky Computing Lab at UC Berkeley, vLLM has evolved into a community-driven project with contributions from both academia and industry. It offers state-of-the-art serving throughput by efficiently managing attention key and value memory through its PagedAttention mechanism. It supports continuous batching of incoming requests and utilizes optimized CUDA kernels, including integration with FlashAttention and FlashInfer, to enhance model execution speed. Additionally, vLLM provides quantization support for GPTQ, AWQ, INT4, INT8, and FP8, as well as speculative decoding capabilities. Users benefit from seamless integration with popular Hugging Face models, support for various decoding algorithms such as parallel sampling and beam search, and compatibility with NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, and more.
  • 8
    Intel Open Edge Platform
    The Intel Open Edge Platform simplifies the development, deployment, and scaling of AI and edge computing solutions on standard hardware with cloud-like efficiency. It provides a curated set of components and workflows that accelerate AI model creation, optimization, and application development. From vision models to generative AI and large language models (LLM), the platform offers tools to streamline model training and inference. By integrating Intel’s OpenVINO toolkit, it ensures enhanced performance on Intel CPUs, GPUs, and VPUs, allowing organizations to bring AI applications to the edge with ease.
  • 9
    Amazon SageMaker Unified Studio
    Amazon SageMaker Unified Studio is a comprehensive, AI and data development environment designed to streamline workflows and simplify the process of building and deploying machine learning models. Built on Amazon DataZone, it integrates various AWS analytics and AI/ML services, such as Amazon EMR, AWS Glue, and Amazon Bedrock, into a single platform. Users can discover, access, and process data from various sources like Amazon S3 and Redshift, and develop generative AI applications. With tools for model development, governance, MLOps, and AI customization, SageMaker Unified Studio provides an efficient, secure, and collaborative environment for data teams.
  • 10
    SiMa

    SiMa

    SiMa

    SiMa offers a software-centric, embedded edge machine learning system-on-chip (MLSoC) platform that delivers high-performance, low-power AI solutions for various applications. The MLSoC integrates multiple modalities, including text, image, audio, video, and haptic inputs, performing complex ML inference and presenting outputs in any modality. It supports a wide range of frameworks (e.g., TensorFlow, PyTorch, ONNX) and can compile over 250 models, providing customers with an effortless experience and world-class performance-per-watt results. Complementing the hardware, SiMa.ai is designed for complete ML stack application development. It supports any ML workflow customers plan to deploy on the edge without compromising performance and ease of use. Palette's integrated ML compiler accepts any model from any neural network framework.
  • 11
    TensorWave

    TensorWave

    TensorWave

    TensorWave is an AI and high-performance computing (HPC) cloud platform purpose-built for performance, powered exclusively by AMD Instinct Series GPUs. It delivers high-bandwidth, memory-optimized infrastructure that scales with your most demanding models, training, or inference. TensorWave offers access to AMD’s top-tier GPUs within seconds, including the MI300X and MI325X accelerators, which feature industry-leading memory capacity and bandwidth, with up to 256GB of HBM3E supporting 6.0TB/s. TensorWave's architecture includes UEC-ready capabilities that optimize the next generation of Ethernet for AI and HPC networking, and direct liquid cooling that delivers exceptional total cost of ownership with up to 51% data center energy cost savings. TensorWave provides high-speed network storage, ensuring game-changing performance, security, and scalability for AI pipelines. It offers plug-and-play compatibility with a wide range of tools and platforms, supporting models, libraries, etc.
  • 12
    NVIDIA DeepStream SDK
    NVIDIA's DeepStream SDK is a comprehensive streaming analytics toolkit based on GStreamer, designed for AI-based multi-sensor processing, including video, audio, and image understanding. It enables developers to create stream-processing pipelines that incorporate neural networks and complex tasks like tracking, video encoding/decoding, and rendering, facilitating real-time analytics on various data types. DeepStream is integral to NVIDIA Metropolis, a platform for building end-to-end services that transform pixel and sensor data into actionable insights. The SDK offers a powerful and flexible environment suitable for a wide range of industries, supporting multiple programming options such as C/C++, Python, and Graph Composer's intuitive UI. It allows for real-time insights by understanding rich, multi-modal sensor data at the edge and supports managed AI services through deployment in cloud-native containers orchestrated with Kubernetes.
  • 13
    Qualcomm Cloud AI SDK
    The Qualcomm Cloud AI SDK is a comprehensive software suite designed to optimize trained deep learning models for high-performance inference on Qualcomm Cloud AI 100 accelerators. It supports a wide range of AI frameworks, including TensorFlow, PyTorch, and ONNX, enabling developers to compile, optimize, and execute models efficiently. The SDK provides tools for model onboarding, tuning, and deployment, facilitating end-to-end workflows from model preparation to production deployment. Additionally, it offers resources such as model recipes, tutorials, and code samples to assist developers in accelerating AI development. It ensures seamless integration with existing systems, allowing for scalable and efficient AI inference in cloud environments. By leveraging the Cloud AI SDK, developers can achieve enhanced performance and efficiency in their AI applications.
  • 14
    Voyager SDK

    Voyager SDK

    Axelera AI

    The Voyager SDK is purpose‑built for Computer Vision at the Edge and enables customers to solve their AI business requirements by effortlessly deploying AI on edge devices. Customers use the SDK to bring their applications into the Metis AI platform and run them on Axelera’s powerful Metis AI Processing Unit (AIPU), whether the application is developed using proprietary or standard industry models. The Voyager SDK offers end‑to‑end integration and is API‑compatible with de facto industry standards, unleashing the potential of the Metis AIPU, delivering high‑performance AI that can be deployed quickly and easily. Developers describe their end‑to‑end application pipelines in a simple, human‑readable, high‑level declarative language, YAML, with one or more neural networks and corresponding pre‑ & post‑processing tasks, including sophisticated image processing operations.
  • 15
    NVIDIA NGC
    NVIDIA GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing. NGC manages a catalog of fully integrated and optimized deep learning framework containers that take full advantage of NVIDIA GPUs in both single GPU and multi-GPU configurations. NVIDIA train, adapt, and optimize (TAO) is an AI-model-adaptation platform that simplifies and accelerates the creation of enterprise AI applications and services. By fine-tuning pre-trained models with custom data through a UI-based, guided workflow, enterprises can produce highly accurate models in hours rather than months, eliminating the need for large training runs and deep AI expertise. Looking to get started with containers and models on NGC? This is the place to start. Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to AI.
  • 16
    Unremot

    Unremot

    Unremot

    Unremot is a go-to place for anyone aspiring to build an AI product - with 120+ pre-built APIs, you can build and launch AI products 2X faster, at 1/3rd cost. Even, some of the most complicated AI product APIs take less than a few minutes to deploy and launch, with minimal code or even no-code. Choose an AI API that you want to integrate to your product from 120+ APIs we have on Unremot. Provide your API private key to authenticate Unremot to access the API. Use unremot unique URL to connect the product API - the whole process takes only minutes, instead of days and weeks.