Best Artificial Intelligence Software for NumPy

Compare the Top Artificial Intelligence Software that integrates with NumPy as of September 2025

This a list of Artificial Intelligence software that integrates with NumPy. Use the filters on the left to add additional filters for products that have integrations with NumPy. View the products that work with NumPy in the table below.

What is Artificial Intelligence Software for NumPy?

Artificial Intelligence (AI) software is computer technology designed to simulate human intelligence. It can be used to perform tasks that require cognitive abilities, such as problem-solving, data analysis, visual perception and language translation. AI applications range from voice recognition and virtual assistants to autonomous vehicles and medical diagnostics. Compare and read user reviews of the best Artificial Intelligence software for NumPy currently available using the table below. This list is updated regularly.

  • 1
    Visual Studio Code
    VSCode: Code editing. Redefined. Free. Built on open source. Runs everywhere. Go beyond syntax highlighting and autocomplete with IntelliSense, which provides smart completions based on variable types, function definitions, and imported modules. Debug code right from the editor. Launch or attach to your running apps and debug with break points, call stacks, and an interactive console. Working with Git and other SCM providers has never been easier. Review diffs, stage files, and make commits right from the editor. Push and pull from any hosted SCM service. Want even more features? Install extensions to add new languages, themes, debuggers, and to connect to additional services. Extensions run in separate processes, ensuring they won't slow down your editor. Learn more about extensions. With Microsoft Azure you can deploy and host your React, Angular, Vue, Node, Python (and more!) sites, store and query relational and document based data, and scale with serverless computing.
  • 2
    PyCharm

    PyCharm

    JetBrains

    All the Python tools in one place. Save time while PyCharm takes care of the routine. Focus on the bigger things and embrace the keyboard-centric approach to get the most of PyCharm's many productivity features. PyCharm knows everything about your code. Rely on it for intelligent code completion, on-the-fly error checking and quick-fixes, easy project navigation, and much more. Write neat and maintainable code while the IDE helps you keep control of the quality with PEP8 checks, testing assistance, smart refactorings, and a host of inspections. PyCharm is designed by programmers, for programmers, to provide all the tools you need for productive Python development. PyCharm provides smart code completion, code inspections, on-the-fly error highlighting and quick-fixes, along with automated code refactorings and rich navigation capabilities.
    Leader badge
    Starting Price: $199 per user per year
  • 3
    Unify AI

    Unify AI

    Unify AI

    Explore the power of choosing the right LLM for your needs and how to optimize for quality, speed, and cost-efficiency. Access all LLMs across all providers with a single API key and a standard API. Setup your own cost, latency, and output speed constraints. Define a custom quality metric. Personalize your router for your requirements. Systematically send your queries to the fastest provider, based on the very latest benchmark data for your region of the world, refreshed every 10 minutes. Get started with Unify with our dedicated walkthrough. Discover the features you already have access to and our upcoming roadmap. Just create a Unify account to access all models from all supported providers with a single API key. Our router balances output quality, speed, and cost based on user-specific preferences. The quality is predicted ahead of time using a neural scoring function, which predicts how good each model would be at responding to a given prompt.
    Starting Price: $1 per credit
  • 4
    scikit-learn

    scikit-learn

    scikit-learn

    Scikit-learn provides simple and efficient tools for predictive data analysis. Scikit-learn is a robust, open source machine learning library for the Python programming language, designed to provide simple and efficient tools for data analysis and modeling. Built on the foundations of popular scientific libraries like NumPy, SciPy, and Matplotlib, scikit-learn offers a wide range of supervised and unsupervised learning algorithms, making it an essential toolkit for data scientists, machine learning engineers, and researchers. The library is organized into a consistent and flexible framework, where various components can be combined and customized to suit specific needs. This modularity makes it easy for users to build complex pipelines, automate repetitive tasks, and integrate scikit-learn into larger machine-learning workflows. Additionally, the library’s emphasis on interoperability ensures that it works seamlessly with other Python libraries, facilitating smooth data processing.
    Starting Price: Free
  • 5
    Gensim

    Gensim

    Radim Řehůřek

    Gensim is a free, open source Python library designed for unsupervised topic modeling and natural language processing, focusing on large-scale semantic modeling. It enables the training of models like Word2Vec, FastText, Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation (LDA), facilitating the representation of documents as semantic vectors and the discovery of semantically related documents. Gensim is optimized for performance with highly efficient implementations in Python and Cython, allowing it to process arbitrarily large corpora using data streaming and incremental algorithms without loading the entire dataset into RAM. It is platform-independent, running on Linux, Windows, and macOS, and is licensed under the GNU LGPL, promoting both personal and commercial use. The library is widely adopted, with thousands of companies utilizing it daily, over 2,600 academic citations, and more than 1 million downloads per week.
    Starting Price: Free
  • 6
    Flower

    Flower

    Flower

    Flower is an open source federated learning framework designed to simplify the development and deployment of machine learning models across decentralized data sources. It enables training on data located on devices or servers without transferring the data itself, thereby enhancing privacy and reducing bandwidth usage. Flower supports a wide range of machine learning frameworks, including PyTorch, TensorFlow, Hugging Face Transformers, scikit-learn, and XGBoost, and is compatible with various platforms and cloud services like AWS, GCP, and Azure. It offers flexibility through customizable strategies and supports both horizontal and vertical federated learning scenarios. Flower's architecture allows for scalable experiments, with the capability to handle workloads involving tens of millions of clients. It also provides built-in support for privacy-preserving techniques like differential privacy and secure aggregation.
    Starting Price: Free
  • 7
    NVIDIA FLARE
    NVIDIA FLARE (Federated Learning Application Runtime Environment) is an open source, extensible SDK designed to facilitate federated learning across diverse industries, including healthcare, finance, and automotive. It enables secure, privacy-preserving AI model training by allowing multiple parties to collaboratively train models without sharing raw data. FLARE supports various machine learning frameworks such as PyTorch, TensorFlow, RAPIDS, and XGBoost, making it adaptable to existing workflows. FLARE's componentized architecture allows for customization and scalability, supporting both horizontal and vertical federated learning. It is suitable for applications requiring data privacy and regulatory compliance, such as medical imaging and financial analytics. It is available for download via the NVIDIA NVFlare GitHub repository and PyPi.
    Starting Price: Free
  • 8
    Avanzai

    Avanzai

    Avanzai

    Avanzai helps accelerate your financial data analysis by letting you use natural language to output production-ready Python code. Avanzai speeds up financial data analysis for both beginners and experts using plain English. Plot times series data, equity index members, and even stock performance data using natural prompts. Skip the boring parts of financial analysis by leveraging AI to generate code with relevant Python packages already installed. Further edit the code if you wish, once you're ready copy and paste the code into your local environment and get straight to business. Leverage commonly used Python packages for quant analysis such as Pandas, Numpy, etc using plain English. Take financial analysis to the next level, quickly pull fundamental data and calculate the performance of nearly all US stocks. Enhance your investment decisions with accurate and up-to-date information. Avanzai empowers you to write the same Python code that quants use to analyze complex financial data.
  • 9
    Yamak.ai

    Yamak.ai

    Yamak.ai

    Train and deploy GPT models for any use case with the first no-code AI platform for businesses. Our prompt experts are here to help you. If you're looking to fine-tune open source models with your own data, our cost-effective tools are specifically designed for the same. Securely deploy your own open source model across multiple clouds without the need to rely on third-party vendors for your valuable data. Our team of experts will deliver the perfect app tailored to your specific requirements. Our tool enables you to effortlessly monitor your usage and reduce costs. Partner with us and let our expert team address your pain points effectively. Efficiently classify your customer calls and automate your company’s customer service with ease. Our advanced solution empowers you to streamline customer interactions and enhance service delivery. Build a robust system that detects fraud and anomalies in your data based on previously flagged data points.
  • 10
    3LC

    3LC

    3LC

    Light up the black box and pip install 3LC to gain the clarity you need to make meaningful changes to your models in moments. Remove the guesswork from your model training and iterate fast. Collect per-sample metrics and visualize them in your browser. Analyze your training and eliminate issues in your dataset. Model-guided, interactive data debugging and enhancements. Find important or inefficient samples. Understand what samples work and where your model struggles. Improve your model in different ways by weighting your data. Make sparse, non-destructive edits to individual samples or in a batch. Maintain a lineage of all changes and restore any previous revisions. Dive deeper than standard experiment trackers with per-sample per epoch metrics and data tracking. Aggregate metrics by sample features, rather than just epoch, to spot hidden trends. Tie each training run to a specific dataset revision for full reproducibility.
  • 11
    JAX

    JAX

    JAX

    ​JAX is a Python library designed for high-performance numerical computing and machine learning research. It offers a NumPy-like API, facilitating seamless adoption for those familiar with NumPy. Key features of JAX include automatic differentiation, just-in-time compilation, vectorization, and parallelization, all optimized for execution on CPUs, GPUs, and TPUs. These capabilities enable efficient computation for complex mathematical functions and large-scale machine-learning models. JAX also integrates with various libraries within its ecosystem, such as Flax for neural networks and Optax for optimization tasks. Comprehensive documentation, including tutorials and user guides, is available to assist users in leveraging JAX's full potential. ​
  • Previous
  • You're on page 1
  • Next