Best Artificial Intelligence Software for Apache Spark

Compare the Top Artificial Intelligence Software that integrates with Apache Spark as of August 2025

This a list of Artificial Intelligence software that integrates with Apache Spark. Use the filters on the left to add additional filters for products that have integrations with Apache Spark. View the products that work with Apache Spark in the table below.

What is Artificial Intelligence Software for Apache Spark?

Artificial Intelligence (AI) software is computer technology designed to simulate human intelligence. It can be used to perform tasks that require cognitive abilities, such as problem-solving, data analysis, visual perception and language translation. AI applications range from voice recognition and virtual assistants to autonomous vehicles and medical diagnostics. Compare and read user reviews of the best Artificial Intelligence software for Apache Spark currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    Artificial Intelligence (AI) in Vertex AI enables businesses to integrate intelligent systems into their operations, transforming the way they interact with customers, analyze data, and make decisions. The platform offers a range of AI-powered tools and models that help businesses address complex problems, automate processes, and gain actionable insights. Vertex AI supports a variety of industries, from finance to healthcare, by offering scalable solutions that can be tailored to specific needs. New customers receive $300 in free credits, which they can use to experiment with different AI solutions and accelerate their digital transformation efforts. Vertex AI provides businesses with the tools needed to harness the power of AI and unlock new opportunities for growth and innovation.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Dataiku

    Dataiku

    Dataiku

    Dataiku is an advanced data science and machine learning platform designed to enable teams to build, deploy, and manage AI and analytics projects at scale. It empowers users, from data scientists to business analysts, to collaboratively create data pipelines, develop machine learning models, and prepare data using both visual and coding interfaces. Dataiku supports the entire AI lifecycle, offering tools for data preparation, model training, deployment, and monitoring. The platform also includes integrations for advanced capabilities like generative AI, helping organizations innovate and deploy AI solutions across industries.
  • 3
    JupyterLab

    JupyterLab

    Jupyter

    Project Jupyter exists to develop open-source software, open-standards, and services for interactive computing across dozens of programming languages. JupyterLab is a web-based interactive development environment for Jupyter notebooks, code, and data. JupyterLab is flexible, configure and arrange the user interface to support a wide range of workflows in data science, scientific computing, and machine learning. JupyterLab is extensible and modular, write plugins that add new components and integrate with existing ones. The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include, data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more. Jupyter supports over 40 programming languages, including Python, R, Julia, and Scala.
  • 4
    Dagster

    Dagster

    Dagster Labs

    Dagster is a next-generation orchestration platform for the development, production, and observation of data assets. Unlike other data orchestration solutions, Dagster provides you with an end-to-end development lifecycle. Dagster gives you control over your disparate data tools and empowers you to build, test, deploy, run, and iterate on your data pipelines. It makes you and your data teams more productive, your operations more robust, and puts you in complete control of your data processes as you scale. Dagster brings a declarative approach to the engineering of data pipelines. Your team defines the data assets required, quickly assessing their status and resolving any discrepancies. An assets-based model is clearer than a tasks-based one and becomes a unifying abstraction across the whole workflow.
    Starting Price: $0
  • 5
    Union Cloud

    Union Cloud

    Union.ai

    Union.ai is an award-winning, Flyte-based data and ML orchestrator for scalable, reproducible ML pipelines. With Union.ai, you can write your code locally and easily deploy pipelines to remote Kubernetes clusters. “Flyte’s scalability, data lineage, and caching capabilities enable us to train hundreds of models on petabytes of geospatial data, giving us an edge in our business.” — Arno, CTO at Blackshark.ai “With Flyte, we want to give the power back to biologists. We want to stand up something that they can play around with different parameters for their models because not every … parameter is fixed. We want to make sure we are giving them the power to run the analyses.” — Krishna Yeramsetty, Principal Data Scientist at Infinome “Flyte plays a vital role as a key component of Gojek's ML Platform by providing exactly that." — Pradithya Aria Pura, Principal Engineer at Goj
    Starting Price: Free (Flyte)
  • 6
    Azure Data Science Virtual Machines
    DSVMs are Azure Virtual Machine images, pre-installed, configured and tested with several popular tools that are commonly used for data analytics, machine learning and AI training. Consistent setup across team, promote sharing and collaboration, Azure scale and management, Near-Zero Setup, full cloud-based desktop for data science. Quick, Low friction startup for one to many classroom scenarios and online courses. Ability to run analytics on all Azure hardware configurations with vertical and horizontal scaling. Pay only for what you use, when you use it. Readily available GPU clusters with Deep Learning tools already pre-configured. Examples, templates and sample notebooks built or tested by Microsoft are provided on the VMs to enable easy onboarding to the various tools and capabilities such as Neural Networks (PYTorch, Tensorflow, etc.), Data Wrangling, R, Python, Julia, and SQL Server.
    Starting Price: $0.005
  • 7
    Prophecy

    Prophecy

    Prophecy

    Prophecy enables many more users - including visual ETL developers and Data Analysts. All you need to do is point-and-click and write a few SQL expressions to create your pipelines. As you use the Low-Code designer to build your workflows - you are developing high quality, readable code for Spark and Airflow that is committed to your Git. Prophecy gives you a gem builder - for you to quickly develop and rollout your own Frameworks. Examples are Data Quality, Encryption, new Sources and Targets that extend the built-in ones. Prophecy provides best practices and infrastructure as managed services – making your life and operations simple! With Prophecy, your workflows are high performance and use scale-out performance & scalability of the cloud.
    Starting Price: $299 per month
  • 8
    BentoML

    BentoML

    BentoML

    Serve your ML model in any cloud in minutes. Unified model packaging format enabling both online and offline serving on any platform. 100x the throughput of your regular flask-based model server, thanks to our advanced micro-batching mechanism. Deliver high-quality prediction services that speak the DevOps language and integrate perfectly with common infrastructure tools. Unified format for deployment. High-performance model serving. DevOps best practices baked in. The service uses the BERT model trained with the TensorFlow framework to predict movie reviews' sentiment. DevOps-free BentoML workflow, from prediction service registry, deployment automation, to endpoint monitoring, all configured automatically for your team. A solid foundation for running serious ML workloads in production. Keep all your team's models, deployments, and changes highly visible and control access via SSO, RBAC, client authentication, and auditing logs.
    Starting Price: Free
  • 9
    Flyte

    Flyte

    Union.ai

    The workflow automation platform for complex, mission-critical data and ML processes at scale. Flyte makes it easy to create concurrent, scalable, and maintainable workflows for machine learning and data processing. Flyte is used in production at Lyft, Spotify, Freenome, and others. At Lyft, Flyte has been serving production model training and data processing for over four years, becoming the de-facto platform for teams like pricing, locations, ETA, mapping, autonomous, and more. In fact, Flyte manages over 10,000 unique workflows at Lyft, totaling over 1,000,000 executions every month, 20 million tasks, and 40 million containers. Flyte has been battle-tested at Lyft, Spotify, Freenome, and others. It is entirely open-source with an Apache 2.0 license under the Linux Foundation with a cross-industry overseeing committee. Configuring machine learning and data workflows can get complex and error-prone with YAML.
    Starting Price: Free
  • 10
    Vertex AI Notebooks
    Vertex AI Notebooks is a fully managed, scalable solution from Google Cloud that accelerates machine learning (ML) development. It provides a seamless, interactive environment for data scientists and developers to explore data, prototype models, and collaborate in real-time. With integration into Google Cloud’s vast data and ML tools, Vertex AI Notebooks supports rapid prototyping, automated workflows, and deployment, making it easier to scale ML operations. The platform’s support for both Colab Enterprise and Vertex AI Workbench ensures a flexible and secure environment for diverse enterprise needs.
    Starting Price: $10 per GB
  • 11
    Comet

    Comet

    Comet

    Manage and optimize models across the entire ML lifecycle, from experiment tracking to monitoring models in production. Achieve your goals faster with the platform built to meet the intense demands of enterprise teams deploying ML at scale. Supports your deployment strategy whether it’s private cloud, on-premise servers, or hybrid. Add two lines of code to your notebook or script and start tracking your experiments. Works wherever you run your code, with any machine learning library, and for any machine learning task. Easily compare experiments—code, hyperparameters, metrics, predictions, dependencies, system metrics, and more—to understand differences in model performance. Monitor your models during every step from training to production. Get alerts when something is amiss, and debug your models to address the issue. Increase productivity, collaboration, and visibility across all teams and stakeholders.
    Starting Price: $179 per user per month
  • 12
    Apache PredictionIO
    Apache PredictionIO® is an open-source machine learning server built on top of a state-of-the-art open-source stack for developers and data scientists to create predictive engines for any machine learning task. It lets you quickly build and deploy an engine as a web service on production with customizable templates. Respond to dynamic queries in real-time once deployed as a web service, evaluate and tune multiple engine variants systematically, and unify data from multiple platforms in batch or in real-time for comprehensive predictive analytics. Speed up machine learning modeling with systematic processes and pre-built evaluation measures, support machine learning and data processing libraries such as Spark MLLib and OpenNLP. Implement your own machine learning models and seamlessly incorporate them into your engine. Simplify data infrastructure management. Apache PredictionIO® can be installed as a full machine learning stack, bundled with Apache Spark, MLlib, HBase, Akka HTTP, etc.
    Starting Price: Free
  • 13
    Akira AI

    Akira AI

    Akira AI

    Akira.ai provides businesses with Agentic AI, a set of specialized AI agents designed to optimize and automate complex workflows across various industries. These AI agents collaborate with human teams, enhancing productivity, making real-time decisions, and automating repetitive tasks, such as data analysis, incident management, and HR processes. The platform integrates smoothly with existing systems, including CRMs and ERPs, ensuring a disruption-free transition to AI-enhanced operations. Akira’s AI agents help businesses streamline their operations, increase decision-making speed, and boost overall efficiency, driving innovation across sectors like manufacturing, finance, and IT.
    Starting Price: $15 per month
  • 14
    ZenML

    ZenML

    ZenML

    Simplify your MLOps pipelines. Manage, deploy, and scale on any infrastructure with ZenML. ZenML is completely free and open-source. See the magic with just two simple commands. Set up ZenML in a matter of minutes, and start with all the tools you already use. ZenML standard interfaces ensure that your tools work together seamlessly. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments. Define simple and clear ML workflows without wasting time on boilerplate tooling or infrastructure code. Write portable ML code and switch from experimentation to production in seconds. Manage all your favorite MLOps tools in one place with ZenML's plug-and-play integrations. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
    Starting Price: Free
  • 15
    Spark NLP

    Spark NLP

    John Snow Labs

    Experience the power of large language models like never before, unleashing the full potential of Natural Language Processing (NLP) with Spark NLP, the open source library that delivers scalable LLMs. The full code base is open under the Apache 2.0 license, including pre-trained models and pipelines. The only NLP library built natively on Apache Spark. The most widely used NLP library in the enterprise. Spark ML provides a set of machine learning applications that can be built using two main components, estimators and transformers. The estimators have a method that secures and trains a piece of data to such an application. The transformer is generally the result of a fitting process and applies changes to the target dataset. These components have been embedded to be applicable to Spark NLP. Pipelines are a mechanism for combining multiple estimators and transformers in a single workflow. They allow multiple chained transformations along a machine-learning task.
    Starting Price: Free
  • 16
    Inferyx

    Inferyx

    Inferyx

    Move past application silos, cost overrun, and skill obsolescence to scale faster with our intelligent data and analytics platform. An intelligent platform built to perform data management and advanced analytics. Helps you scale across the technology landscape. Our architecture understands how data flows and transforms throughout its lifecycle. Enabling the development of future-proof enterprise AI applications. A highly modular and extensible platform that enables the handling of multifold components. Designed to scale with a multi-tenant architecture. Analyzing complex data structures is made easy using advanced data visualization. Resulting in enhanced enterprise AI app development in an intuitive and low-code predictive platform. Our unique hybrid multi-cloud platform is built using open source community software which makes it immensely adaptive, highly secure, and essentially low-cost.
    Starting Price: Free
  • 17
    DataHub

    DataHub

    DataHub

    DataHub is an open source metadata platform designed to streamline data discovery, observability, and governance across diverse data ecosystems. It enables organizations to effortlessly discover trustworthy data, with experiences tailored for each person and eliminates breaking changes with detailed cross-platform and column-level lineage. DataHub builds confidence in your data by providing a comprehensive view of business, operational, and technical context, all in one place. The platform offers automated data quality checks and AI-driven anomaly detection, notifying teams when issues arise and centralizing incident tracking. With detailed lineage, documentation, and ownership information, DataHub facilitates swift issue resolution. It also automates governance programs by classifying assets as they evolve, minimizing manual work through GenAI documentation, AI-driven classification, and smart propagation. DataHub's extensible architecture supports over 70 native integrations.
    Starting Price: Free
  • 18
    Alteryx

    Alteryx

    Alteryx

    Step into a new era of analytics with the Alteryx AI Platform. Empower your organization with automated data preparation, AI-powered analytics, and approachable machine learning — all with embedded governance and security. Welcome to the future of data-driven decisions for every user, every team, every step of the way. Empower your teams with an easy, intuitive user experience allowing everyone to create analytic solutions that improve productivity, efficiency, and the bottom line. Build an analytics culture with an end-to-end cloud analytics platform and transform data into insights with self-service data prep, machine learning, and AI-generated insights. Reduce risk and ensure your data is fully protected with the latest security standards and certifications. Connect to your data and applications with open API standards.
  • 19
    RazorThink

    RazorThink

    RazorThink

    RZT aiOS offers all of the benefits of a unified artificial intelligence platform and more, because it's not just a platform — it's a comprehensive Operating System that fully connects, manages and unifies all of your AI initiatives. And, AI developers now can do in days what used to take them months, because aiOS process management dramatically increases the productivity of AI teams. This Operating System offers an intuitive environment for AI development, letting you visually build models, explore data, create processing pipelines, run experiments, and view analytics. What's more is that you can do it all even without advanced software engineering skills.
  • 20
    Intel Tiber AI Studio
    Intel® Tiber™ AI Studio is a comprehensive machine learning operating system that unifies and simplifies the AI development process. The platform supports a wide range of AI workloads, providing a hybrid and multi-cloud infrastructure that accelerates ML pipeline development, model training, and deployment. With its native Kubernetes orchestration and meta-scheduler, Tiber™ AI Studio offers complete flexibility in managing on-prem and cloud resources. Its scalable MLOps solution enables data scientists to easily experiment, collaborate, and automate their ML workflows while ensuring efficient and cost-effective utilization of resources.
  • 21
    Oracle Machine Learning
    Machine learning uncovers hidden patterns and insights in enterprise data, generating new value for the business. Oracle Machine Learning accelerates the creation and deployment of machine learning models for data scientists using reduced data movement, AutoML technology, and simplified deployment. Increase data scientist and developer productivity and reduce their learning curve with familiar open source-based Apache Zeppelin notebook technology. Notebooks support SQL, PL/SQL, Python, and markdown interpreters for Oracle Autonomous Database so users can work with their language of choice when developing models. A no-code user interface supporting AutoML on Autonomous Database to improve both data scientist productivity and non-expert user access to powerful in-database algorithms for classification and regression. Data scientists gain integrated model deployment from the Oracle Machine Learning AutoML User Interface.
  • 22
    Sync

    Sync

    Sync Computing

    Sync Computing offers Gradient, an AI-powered compute optimization engine designed to enhance data infrastructure efficiency. By leveraging advanced machine learning algorithms developed at MIT, Gradient provides automated optimization for organizations running data workloads on cloud-based CPUs or GPUs. Users can achieve up to 50% cost savings on their Databricks compute expenses while consistently meeting runtime service level agreements (SLAs). Gradient's continuous monitoring and fine-tuning capabilities ensure optimal performance across complex data pipelines, adapting seamlessly to varying data sizes and workload patterns. The platform integrates with existing data tools and supports multiple cloud providers, offering a comprehensive solution for managing and optimizing data infrastructure.
  • 23
    Saagie

    Saagie

    Saagie

    The Saagie cloud data factory is a turnkey platform that lets you create and manage all your data & AI projects in a single interface, deployable in just a few clicks. Develop your use cases and test your AI models in a secure way with the Saagie data factory. Get your data and AI projects off the ground with a single interface and centralize your teams to make rapid progress. Whatever your maturity level, from your first data project to a data & AI-driven strategy, the Saagie platform is there for you. Simplify your workflows, boost your productivity, and make more informed decisions by unifying your work on a single platform. Transform your raw data into powerful insights by orchestrating your data pipelines. Get quick access to the information you need to make more informed decisions. Simplify the management and scalability of your data and AI infrastructure. Accelerate the time-to-production of your AI, machine learning, and deep learning models.
  • 24
    Medical LLM

    Medical LLM

    John Snow Labs

    John Snow Labs' Medical LLM is an advanced, domain-specific large language model (LLM) designed to revolutionize the way healthcare organizations harness the power of artificial intelligence. This innovative platform is tailored specifically for the healthcare industry, combining cutting-edge natural language processing (NLP) capabilities with a deep understanding of medical terminology, clinical workflows, and regulatory requirements. The result is a powerful tool that enables healthcare providers, researchers, and administrators to unlock new insights, improve patient outcomes, and drive operational efficiency. At the heart of the Healthcare LLM is its comprehensive training on vast amounts of healthcare data, including clinical notes, research papers, and regulatory documents. This specialized training allows the model to accurately interpret and generate medical text, making it an invaluable asset for tasks such as clinical documentation, automated coding, and medical research.
  • 25
    E2E Cloud

    E2E Cloud

    ​E2E Networks

    ​E2E Cloud provides advanced cloud solutions tailored for AI and machine learning workloads. We offer access to cutting-edge NVIDIA GPUs, including H200, H100, A100, L40S, and L4, enabling businesses to efficiently run AI/ML applications. Our services encompass GPU-intensive cloud computing, AI/ML platforms like TIR built on Jupyter Notebook, Linux and Windows cloud solutions, storage cloud with automated backups, and cloud solutions with pre-installed frameworks. E2E Networks emphasizes a high-value, top-performance infrastructure, boasting a 90% cost reduction in monthly cloud bills for clients. Our multi-region cloud is designed for performance, reliability, resilience, and security, serving over 15,000 clients. Additional features include block storage, load balancers, object storage, one-click deployment, database-as-a-service, API & CLI access, and a content delivery network.
    Starting Price: $0.012 per hour
  • 26
    FeatureByte

    FeatureByte

    FeatureByte

    FeatureByte is your AI data scientist streamlining the entire lifecycle so that what once took months now happens in hours. Deployed natively on Databricks, Snowflake, BigQuery, or Spark, it automates feature engineering, ideation, cataloging, custom UDFs (including transformer support), evaluation, selection, historical backfill, deployment, and serving (online or batch), all within a unified platform. FeatureByte’s GenAI‑inspired agents, data, domain, MLOps, and data science agents interactively guide teams through data acquisition, quality, feature generation, model creation, deployment orchestration, and continued monitoring. FeatureByte’s SDK and intuitive UI enable automated and semi‑automated feature ideation, customizable pipelines, cataloging, lineage tracking, approval flows, RBAC, alerts, and version control, empowering teams to build, refine, document, and serve features rapidly and reliably.
  • 27
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 28
    TiMi

    TiMi

    TIMi

    With TIMi, companies can capitalize on their corporate data to develop new ideas and make critical business decisions faster and easier than ever before. The heart of TIMi’s Integrated Platform. TIMi’s ultimate real-time AUTO-ML engine. 3D VR segmentation and visualization. Unlimited self service business Intelligence. TIMi is several orders of magnitude faster than any other solution to do the 2 most important analytical tasks: the handling of datasets (data cleaning, feature engineering, creation of KPIs) and predictive modeling. TIMi is an “ethical solution”: no “lock-in” situation, just excellence. We guarantee you a work in all serenity and without unexpected extra costs. Thanks to an original & unique software infrastructure, TIMi is optimized to offer you the greatest flexibility for the exploration phase and the highest reliability during the production phase. TIMi is the ultimate “playground” that allows your analysts to test the craziest ideas!
  • 29
    Privacera

    Privacera

    Privacera

    At the intersection of data governance, privacy, and security, Privacera’s unified data access governance platform maximizes the value of data by providing secure data access control and governance across hybrid- and multi-cloud environments. The hybrid platform centralizes access and natively enforces policies across multiple cloud services—AWS, Azure, Google Cloud, Databricks, Snowflake, Starburst and more—to democratize trusted data enterprise-wide without compromising compliance with regulations such as GDPR, CCPA, LGPD, or HIPAA. Trusted by Fortune 500 customers across finance, insurance, retail, healthcare, media, public and the federal sector, Privacera is the industry’s leading data access governance platform that delivers unmatched scalability, elasticity, and performance. Headquartered in Fremont, California, Privacera was founded in 2016 to manage cloud data privacy and security by the creators of Apache Ranger™ and Apache Atlas™.
  • 30
    MLflow

    MLflow

    MLflow

    MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. MLflow currently offers four components. Record and query experiments: code, data, config, and results. Package data science code in a format to reproduce runs on any platform. Deploy machine learning models in diverse serving environments. Store, annotate, discover, and manage models in a central repository. The MLflow Tracking component is an API and UI for logging parameters, code versions, metrics, and output files when running your machine learning code and for later visualizing the results. MLflow Tracking lets you log and query experiments using Python, REST, R API, and Java API APIs. An MLflow Project is a format for packaging data science code in a reusable and reproducible way, based primarily on conventions. In addition, the Projects component includes an API and command-line tools for running projects.
  • Previous
  • You're on page 1
  • 2
  • Next