Compare the Top AI Vision Models that integrate with OpenAI as of July 2025

This a list of AI Vision Models that integrate with OpenAI. Use the filters on the left to add additional filters for products that have integrations with OpenAI. View the products that work with OpenAI in the table below.

What are AI Vision Models for OpenAI?

AI vision models, also known as computer vision models, are designed to enable machines to interpret and understand visual information from the world, such as images or video. These models use deep learning techniques, often employing convolutional neural networks (CNNs), to analyze patterns and features in visual data. They can perform tasks like object detection, image classification, facial recognition, and scene segmentation. By training on large datasets, AI vision models improve their accuracy and ability to make predictions based on visual input. These models are widely used in fields such as healthcare, autonomous driving, security, and augmented reality. Compare and read user reviews of the best AI Vision Models for OpenAI currently available using the table below. This list is updated regularly.

  • 1
    GPT-4o

    GPT-4o

    OpenAI

    GPT-4o (“o” for “omni”) is a step towards much more natural human-computer interaction—it accepts as input any combination of text, audio, image, and video and generates any combination of text, audio, and image outputs. It can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time (opens in a new window) in a conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models.
    Starting Price: $5.00 / 1M tokens
  • 2
    GPT-4o mini
    A small model with superior textual intelligence and multimodal reasoning. GPT-4o mini enables a broad range of tasks with its low cost and latency, such as applications that chain or parallelize multiple model calls (e.g., calling multiple APIs), pass a large volume of context to the model (e.g., full code base or conversation history), or interact with customers through fast, real-time text responses (e.g., customer support chatbots). Today, GPT-4o mini supports text and vision in the API, with support for text, image, video and audio inputs and outputs coming in the future. The model has a context window of 128K tokens, supports up to 16K output tokens per request, and has knowledge up to October 2023. Thanks to the improved tokenizer shared with GPT-4o, handling non-English text is now even more cost effective.
  • 3
    GPT-4V (Vision)
    GPT-4 with vision (GPT-4V) enables users to instruct GPT-4 to analyze image inputs provided by the user, and is the latest capability we are making broadly available. Incorporating additional modalities (such as image inputs) into large language models (LLMs) is viewed by some as a key frontier in artificial intelligence research and development. Multimodal LLMs offer the possibility of expanding the impact of language-only systems with novel interfaces and capabilities, enabling them to solve new tasks and provide novel experiences for their users. In this system card, we analyze the safety properties of GPT-4V. Our work on safety for GPT-4V builds on the work done for GPT-4 and here we dive deeper into the evaluations, preparation, and mitigation work done specifically for image inputs.
  • Previous
  • You're on page 1
  • Next