Compare the Top AI Models in the USA as of February 2026 - Page 11

  • 1
    GPT-5.2 Thinking
    GPT-5.2 Thinking is the highest-capability configuration in OpenAI’s GPT-5.2 model family, engineered for deep, expert-level reasoning, complex task execution, and advanced problem solving across long contexts and professional domains. Built on the foundational GPT-5.2 architecture with improvements in grounding, stability, and reasoning quality, this variant applies more compute and reasoning effort to generate responses that are more accurate, structured, and contextually rich when handling highly intricate workflows, multi-step analysis, and domain-specific challenges. GPT-5.2 Thinking excels at tasks that require sustained logical coherence, such as detailed research synthesis, advanced coding and debugging, complex data interpretation, strategic planning, and sophisticated technical writing, and it outperforms lighter variants on benchmarks that test professional skills and deep comprehension.
  • 2
    GPT-5.2 Instant
    GPT-5.2 Instant is the fast, capable variant of OpenAI’s GPT-5.2 model family designed for everyday work and learning with clear improvements in information-seeking questions, how-tos and walkthroughs, technical writing, and translation compared to prior versions. It builds on the warmer conversational tone introduced in GPT-5.1 Instant and produces clearer explanations that surface key information upfront, making it easier for users to get concise, accurate answers quickly. GPT-5.2 Instant delivers speed and responsiveness for typical tasks like answering queries, generating summaries, assisting with research, and helping with writing and editing, while incorporating broader enhancements from the GPT-5.2 series in reasoning, long-context handling, and factual grounding. As part of the GPT-5.2 lineup, it shares the same foundational improvements that boost overall reliability and performance across a wide range of everyday activities.
  • 3
    GPT-5.2 Pro
    GPT-5.2 Pro is the highest-capability variant of OpenAI’s latest GPT-5.2 model family, built to deliver professional-grade reasoning, complex task performance, and enhanced accuracy for demanding knowledge work, creative problem-solving, and enterprise-level applications. It builds on the foundational improvements of GPT-5.2, including stronger general intelligence, superior long-context understanding, better factual grounding, and improved tool use, while using more compute and deeper processing to produce more thoughtful, reliable, and context-rich responses for users with intricate, multi-step requirements. GPT-5.2 Pro is designed to handle challenging workflows such as advanced coding and debugging, deep data analysis, research synthesis, extensive document comprehension, and complex project planning with greater precision and fewer errors than lighter variants.
  • 4
    Gemini 3 Flash
    Gemini 3 Flash is Google’s latest AI model built to deliver frontier intelligence with exceptional speed and efficiency. It combines Pro-level reasoning with Flash-level latency, making advanced AI more accessible and affordable. The model excels in complex reasoning, multimodal understanding, and agentic workflows while using fewer tokens for everyday tasks. Gemini 3 Flash is designed to scale across consumer apps, developer tools, and enterprise platforms. It supports rapid coding, data analysis, video understanding, and interactive application development. By balancing performance, cost, and speed, Gemini 3 Flash redefines what fast AI can achieve.
  • 5
    GPT Image 1.5
    GPT Image 1.5 is OpenAI’s state-of-the-art image generation model built for precise, high-quality visual creation. It supports both text and image inputs and produces image or text outputs with strong adherence to prompts. The model improves instruction following, enabling more accurate image generation and editing results. GPT Image 1.5 is designed for professional and creative use cases that require reliability and visual consistency. It is available through multiple API endpoints, including image generation and image editing. Pricing is token-based, with separate rates for text and image inputs and outputs. GPT Image 1.5 offers a powerful foundation for developers building image-focused applications.
  • 6
    Mistral OCR 3

    Mistral OCR 3

    Mistral AI

    Mistral OCR 3 is the third-generation optical character recognition model from Mistral AI designed to achieve a new frontier in accuracy and efficiency for document processing by extracting text, embedded images, and structure from a wide range of documents with exceptional fidelity. It delivers breakthrough performance with a 74% overall win rate over the previous generation on forms, scanned documents, complex tables, and handwriting, outperforming both enterprise document processing solutions and AI-native OCR tools. OCR 3 supports output in clean text, Markdown, or structured JSON with HTML table reconstruction to preserve layout, enabling downstream systems and workflows to understand both content and structure. It powers the Document AI Playground in Mistral AI Studio for drag-and-drop parsing of PDFs and images and integrates via API for developers to automate document extraction workflows.
    Starting Price: $14.99 per month
  • 7
    FLUX.2 [max]

    FLUX.2 [max]

    Black Forest Labs

    FLUX.2 [max] is the flagship image-generation and editing model in the FLUX.2 family from Black Forest Labs that delivers top-tier photorealistic output with professional-grade quality and unmatched consistency across styles, objects, characters, and scenes. It supports grounded generation that can incorporate real-time contextual information, enabling visuals that reflect current trends, environments, and detailed prompt intent while maintaining coherence and structure. It excels at producing marketplace-ready product photos, cinematic visuals, logo and brand assets, and high-fidelity creative imagery with precise control over colors, lighting, composition, and textures, and it preserves identity even through complex edits and multi-reference inputs. FLUX.2 [max] handles detailed features such as character proportions, facial expressions, typography, and spatial reasoning with high stability, making it suitable for iterative creative workflows.
  • 8
    FLUX.2 [klein]

    FLUX.2 [klein]

    Black Forest Labs

    FLUX.2 [klein] is the fastest member of the FLUX.2 family of AI image models, designed to unify text-to-image generation, image editing, and multi-reference composition into a single compact architecture that delivers state-of-the-art visual quality at sub-second inference times on modern GPUs, making it suitable for real-time and latency-critical applications. It supports both generation from prompts and editing existing images with references, combining high diversity and photorealistic outputs with extremely low latency so users can iterate quickly in interactive workflows; distilled versions can produce or edit images in under 0.5 seconds on capable hardware, and even compact 4 B variants run on consumer GPUs with about 8–13 GB of VRAM. The FLUX.2 [klein] family comes in different variants, including distilled and base versions at 9 B and 4 B parameter scales, giving developers options for local deployment, fine-tuning, research, and production integration.
  • 9
    GLM-4.7-FlashX
    GLM-4.7 FlashX is a lightweight, high-speed version of the GLM-4.7 large language model created by Z.ai that balances efficiency and performance for real-time AI tasks across English and Chinese while offering the core capabilities of the broader GLM-4.7 family in a more resource-friendly package. It is positioned alongside GLM-4.7 and GLM-4.7 Flash, delivering optimized agentic coding and general language understanding with faster response times and lower resource needs, making it suitable for applications that require rapid inference without heavy infrastructure. As part of the GLM-4.7 model series, it inherits the model’s strengths in programming, multi-step reasoning, and robust conversational understanding, and it supports long contexts for complex tasks while remaining lightweight enough for deployment with constrained compute budgets.
    Starting Price: $0.07 per 1M tokens
  • 10
    Qwen3-Max-Thinking
    Qwen3-Max-Thinking is Alibaba’s latest flagship reasoning-enhanced large language model, built as an extension of the Qwen3-Max family and designed to deliver state-of-the-art analytical performance and multi-step reasoning capabilities. It scales up from one of the largest parameter bases in the Qwen ecosystem and incorporates advanced reinforcement learning and adaptive tool integration so the model can leverage search, memory, and code interpreter functions dynamically during inference to address difficult multi-stage tasks with higher accuracy and contextual depth compared with standard generative responses. Qwen3-Max-Thinking introduces a unique Thinking Mode that exposes deliberate, step-by-step reasoning before final outputs, enabling transparency and traceability of logical chains, and can be tuned with configurable “thinking budgets” to balance performance quality with computational cost.
  • 11
    Odyssey-2 Pro

    Odyssey-2 Pro

    Odyssey ML

    Odyssey-2 Pro is a frontier general-purpose world model that generates continuous, interactive simulations you can integrate into products via the Odyssey API, marking a pivotal moment for world models similar to GPT-2 in language. It’s trained on large amounts of video and interaction data to learn how the world evolves frame-by-frame and outputs minutes-long simulations that can be interacted with in real time, not fixed short clips. Odyssey-2 Pro delivers improved physics, richer dynamics, more authentic behaviors, and sharper visuals by streaming 720p video at up to ~22 FPS that responds instantly to prompts and actions, and it supports embedding interactive streams, viewable streams, and parameterized simulations into applications with simple SDKs in JavaScript and Python. Developers can integrate the model with under ten lines of code to create open-ended, interactive video experiences where users’ inputs shape evolving scenes.
  • 12
    LUIS

    LUIS

    Microsoft

    Language Understanding (LUIS): A machine learning-based service to build natural language into apps, bots, and IoT devices. Quickly create enterprise-ready, custom models that continuously improve. Add natural language to your apps. Designed to identify valuable information in conversations, LUIS interprets user goals (intents) and distills valuable information from sentences (entities), for a high quality, nuanced language model. LUIS integrates seamlessly with the Azure Bot Service, making it easy to create a sophisticated bot. Powerful developer tools are combined with customizable pre-built apps and entity dictionaries, such as Calendar, Music, and Devices, so you can build and deploy a solution more quickly. Dictionaries are mined from the collective knowledge of the web and supply billions of entries, helping your model to correctly identify valuable information from user conversations. Active learning is used to continuously improve the quality of the models.
  • 13
    Sparrow

    Sparrow

    DeepMind

    Sparrow is a research model and proof of concept, designed with the goal of training dialogue agents to be more helpful, correct, and harmless. By learning these qualities in a general dialogue setting, Sparrow advances our understanding of how we can train agents to be safer and more useful – and ultimately, to help build safer and more useful artificial general intelligence (AGI). Sparrow is not yet available for public use. Training a conversational AI is an especially challenging problem because it’s difficult to pinpoint what makes a dialogue successful. To address this problem, we turn to a form of reinforcement learning (RL) based on people's feedback, using the study participants’ preference feedback to train a model of how useful an answer is. To get this data, we show our participants multiple model answers to the same question and ask them which answer they like the most.
  • 14
    NVIDIA NeMo
    NVIDIA NeMo LLM is a service that provides a fast path to customizing and using large language models trained on several frameworks. Developers can deploy enterprise AI applications using NeMo LLM on private and public clouds. They can also experience Megatron 530B—one of the largest language models—through the cloud API or experiment via the LLM service. Customize your choice of various NVIDIA or community-developed models that work best for your AI applications. Within minutes to hours, get better responses by providing context for specific use cases using prompt learning techniques. Leverage the power of NVIDIA Megatron 530B, one of the largest language models, through the NeMo LLM Service or the cloud API. Take advantage of models for drug discovery, including in the cloud API and NVIDIA BioNeMo framework.
  • 15
    ERNIE Bot
    ERNIE Bot is an AI-powered conversational assistant developed by Baidu, designed to facilitate seamless and natural interactions with users. Built on the ERNIE (Enhanced Representation through Knowledge Integration) model, ERNIE Bot excels at understanding complex queries and generating human-like responses across various domains. Its capabilities include processing text, generating images, and engaging in multimodal communication, making it suitable for a wide range of applications such as customer support, virtual assistants, and enterprise automation. With its advanced contextual understanding, ERNIE Bot offers an intuitive and efficient solution for businesses seeking to enhance their digital interactions and automate workflows.
    Starting Price: Free
  • 16
    PaLM

    PaLM

    Google

    PaLM API is an easy and safe way to build on top of our best language models. Today, we’re making an efficient model available, in terms of size and capabilities, and we’ll add other sizes soon. The API also comes with an intuitive tool called MakerSuite, which lets you quickly prototype ideas and, over time, will have features for prompt engineering, synthetic data generation and custom-model tuning — all supported by robust safety tools. Select developers can access the PaLM API and MakerSuite in Private Preview today, and stay tuned for our waitlist soon.
  • 17
    Med-PaLM 2

    Med-PaLM 2

    Google Cloud

    Healthcare breakthroughs change the world and bring hope to humanity through scientific rigor, human insight, and compassion. We believe AI can contribute to this, with thoughtful collaboration between researchers, healthcare organizations, and the broader ecosystem. Today, we're sharing exciting progress on these initiatives, with the announcement of limited access to Google’s medical large language model, or LLM, called Med-PaLM 2. It will be available in the coming weeks to a select group of Google Cloud customers for limited testing, to explore use cases and share feedback as we investigate safe, responsible, and meaningful ways to use this technology. Med-PaLM 2 harnesses the power of Google’s LLMs, aligned to the medical domain to more accurately and safely answer medical questions. As a result, Med-PaLM 2 was the first LLM to perform at an “expert” test-taker level performance on the MedQA dataset of US Medical Licensing Examination (USMLE)-style questions.
  • 18
    Gopher

    Gopher

    Google DeepMind

    Language, and its role in demonstrating and facilitating comprehension - or intelligence - is a fundamental part of being human. It gives people the ability to communicate thoughts and concepts, express ideas, create memories, and build mutual understanding. These are foundational parts of social intelligence. It’s why our teams at DeepMind study aspects of language processing and communication, both in artificial agents and in humans. As part of a broader portfolio of AI research, we believe the development and study of more powerful language models – systems that predict and generate text – have tremendous potential for building advanced AI systems that can be used safely and efficiently to summarise information, provide expert advice and follow instructions via natural language. Developing beneficial language models requires research into their potential impacts, including the risks they pose.
  • 19
    PaLM 2

    PaLM 2

    Google

    PaLM 2 is our next generation large language model that builds on Google’s legacy of breakthrough research in machine learning and responsible AI. It excels at advanced reasoning tasks, including code and math, classification and question answering, translation and multilingual proficiency, and natural language generation better than our previous state-of-the-art LLMs, including PaLM. It can accomplish these tasks because of the way it was built – bringing together compute-optimal scaling, an improved dataset mixture, and model architecture improvements. PaLM 2 is grounded in Google’s approach to building and deploying AI responsibly. It was evaluated rigorously for its potential harms and biases, capabilities and downstream uses in research and in-product applications. It’s being used in other state-of-the-art models, like Med-PaLM 2 and Sec-PaLM, and is powering generative AI features and tools at Google, like Bard and the PaLM API.
  • 20
    Hippocratic AI

    Hippocratic AI

    Hippocratic AI

    Hippocratic AI is the new state of the art (SOTA) model, outperforming GPT-4 on 105 of 114 healthcare exams and certifications. Hippocratic AI has outperformed GPT-4 on 105 out of 114 tests and certifications, outperformed by a margin of five percent or more on 74 of the certifications, and outperformed by a margin of ten percent or more on 43 of the certifications. Most language models pre-train on the common crawl of the Internet, which may include incorrect and misleading information. Unlike these LLMs, Hippocratic AI is investing heavily in legally acquiring evidence-based healthcare content. We’re conducting a unique Reinforcement Learning with Human Feedback process using healthcare professionals to train and validate the model’s readiness for deployment. We call this RLHF-HP. Hippocratic AI will not release the model until a large number of these licensed professionals deem it safe.
  • 21
    YandexGPT
    Take advantage of the capabilities of generative language models to improve and optimize your applications and web services. Get an aggregated result of accumulated textual data whether it be information from work chats, user reviews, or other types of data. YandexGPT will help both summarize and interpret the information. Speed up text creation as you improve their quality and style. Create template texts for newsletters, product descriptions for online stores and other applications. Develop a chatbot for your support service: teach the bot to answer various user questions, both common and more complicated. Use the API to integrate the service with your applications and automate processes.
  • 22
    Ntropy

    Ntropy

    Ntropy

    Ship faster integrating with our Python SDK or Rest API in minutes. No prior setups or data formatting. You can get going straight away as soon as you have incoming data and your first customers. We have built and fine-tuned custom language models to recognize entities, automatically crawl the web in real-time and pick the best match, as well as assign labels with superhuman accuracy in a fraction of the time. Everybody has a data enrichment model that is trying to be good at one thing, US or Europe, business or consumer. These models are poor at generalizing and are not capable of human-level output. With us, you can leverage the power of the world's largest and most performant models embedded in your products, at a fraction of cost and time.
  • 23
    Nexusflow

    Nexusflow

    Nexusflow

    Nexusflow offers enterprise-grade generative AI agents that provide complete ownership and control over your AI models, built to operate behind your firewall. The platform features Compact Models that allow businesses to continuously incorporate the latest knowledge, tools, and feedback into their AI agents. Nexusflow’s solution offers domain specialization, ensuring superior quality and cost-effective real-time responses, while eliminating vendor lock-in. This makes it ideal for businesses looking to integrate generative AI into their workflows with full data ownership and scalable solutions.
  • 24
    Giga ML

    Giga ML

    Giga ML

    We just launched X1 large series of Models. Giga ML's most powerful model is available for pre-training and fine-tuning with on-prem deployment. Since we are Open AI compatible, your existing integrations with long chain, llama-index, and all others work seamlessly. You can continue pre-training of LLM's with domain-specific data books or docs or company docs. The world of large language models (LLMs) rapidly expanding, offering unprecedented opportunities for natural language processing across various domains. However, some critical challenges have remained unaddressed. At Giga ML, we proudly introduce the X1 Large 32k model, a pioneering on-premise LLM solution that addresses these critical issues.
  • 25
    Martian

    Martian

    Martian

    By using the best-performing model for each request, we can achieve higher performance than any single model. Martian outperforms GPT-4 across OpenAI's evals (open/evals). We turn opaque black boxes into interpretable representations. Our router is the first tool built on top of our model mapping method. We are developing many other applications of model mapping including turning transformers from indecipherable matrices into human-readable programs. If a company experiences an outage or high latency period, automatically reroute to other providers so your customers never experience any issues. Determine how much you could save by using the Martian Model Router with our interactive cost calculator. Input your number of users, tokens per session, and sessions per month, and specify your cost/quality tradeoff.
  • 26
    Phi-2

    Phi-2

    Microsoft

    We are now releasing Phi-2, a 2.7 billion-parameter language model that demonstrates outstanding reasoning and language understanding capabilities, showcasing state-of-the-art performance among base language models with less than 13 billion parameters. On complex benchmarks Phi-2 matches or outperforms models up to 25x larger, thanks to new innovations in model scaling and training data curation. With its compact size, Phi-2 is an ideal playground for researchers, including for exploration around mechanistic interpretability, safety improvements, or fine-tuning experimentation on a variety of tasks. We have made Phi-2 available in the Azure AI Studio model catalog to foster research and development on language models.
  • 27
    Hyperplane

    Hyperplane

    Hyperplane

    Better audiences from the richness of transaction data. Create nuanced personas and effective marketing campaigns based on financial behaviors and consumer interests. Increase user limits, without worrying about default. Leverage user income estimates that are precise and always up-to-date. The Hyperplane platform enables financial institutions to launch personalized consumer experiences through specialized foundation models (LLMs). Upgrade your feature sets with embeddings for credit, collections, and lookalike modeling. Segment users based on various criteria, enabling you to target specific audience groups for personalized marketing campaigns, content delivery, and user analysis. Segmentation is achieved through facets, which are key attributes or characteristics used to categorize users, Hyperplane offers the capability to enrich user segmentation by employing additional attributes to fine-tune the filtering of responses from certain audience segmentation endpoints.
  • 28
    Smaug-72B
    Smaug-72B is a powerful open-source large language model (LLM) known for several key features: High Performance: It currently holds the top spot on the Hugging Face Open LLM leaderboard, surpassing models like GPT-3.5 in various benchmarks. This means it excels at tasks like understanding, responding to, and generating human-like text. Open Source: Unlike many other advanced LLMs, Smaug-72B is freely available for anyone to use and modify, fostering collaboration and innovation in the AI community. Focus on Reasoning and Math: It specifically shines in handling reasoning and mathematical tasks, attributing this strength to unique fine-tuning techniques developed by Abacus AI, the creators of Smaug-72B. Based on Qwen-72B: It's technically a fine-tuned version of another powerful LLM called Qwen-72B, released by Alibaba, further improving upon its capabilities. Overall, Smaug-72B represents a significant step forward in open-source AI.
    Starting Price: Free
  • 29
    Gemma

    Gemma

    Google

    Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is inspired by Gemini, and the name reflects the Latin gemma, meaning “precious stone.” Accompanying our model weights, we’re also releasing tools to support developer innovation, foster collaboration, and guide the responsible use of Gemma models. Gemma models share technical and infrastructure components with Gemini, our largest and most capable AI model widely available today. This enables Gemma 2B and 7B to achieve best-in-class performance for their sizes compared to other open models. And Gemma models are capable of running directly on a developer laptop or desktop computer. Notably, Gemma surpasses significantly larger models on key benchmarks while adhering to our rigorous standards for safe and responsible outputs.
  • 30
    Eternity AI

    Eternity AI

    Eternity AI

    Eternity AI is building an HTLM-7B, a machine learning model that knows what the internet is and how to access it to generate responses. Humans don't make decisions based on 2-year-old data. For a model to think like a human, it needs to get access to real-time knowledge and everything about how humans behave. Members of our team have previously published white papers and articles on topics related to on-chain vulnerability coordination, GPT database retrieval, decentralized dispute resolution, etc.